Пределы с корнями в числителе и знаменателе

Методы решений

Для вычисления пределов с корнями, применяются приемы и методы, аналогичные методам вычисления пределов с многочленами (см. «Решение пределов с дробями из многочленов»). При этом возможны следующие дополнительные приемы, специфичные для функций с корнями:
1) убрать корни с помощью подстановки, применяя теорему о пределе сложной функции; Примеры ⇓
2) разделить числитель и знаменатель на x s (в случае неопределенности вида ∞/∞ при x → ∞ ), где s – некоторое подобранное число; Пример ⇓
3) выразить бесконечно малые функции, содержащие корни, через бесконечно малые линейные функции, используя приведенные ниже формулы (то же самое в случае разности бесконечно больших функций); Примеры ⇓
4) иногда удобно бесконечно малую функцию преобразовать в сумму или разность бесконечно малых функций, пределы от которых легко находятся. Пример ⇓

В последних двух случаях применяются следующие формулы:
;
;
;
. . . . . . . .
.
Например:
;
;
.

Эти же формулы применяют и для раскрытия разности бесконечно больших функций: .

Примеры решений

Все примеры Далее мы приводим подробные решения следующих примеров.
Найти предел последовательности:
решение ⇓ ;
найти следующие пределы функций с корнями:
⇓ , ⇓ , ⇓ , ⇓ , ⇓ .

Решение подстановкой

Пример 1

Подставим . Тогда .
При . Мы имеем неопределенность вида .

Замечаем, что от корня можно освободится, если сделать подстановку . Отсюда ; при .
Тогда функцию за знаком предела можно представить как сложную:
,
где , .

Далее необходимо применить теорему о пределе сложной функции. Для ее применения должны выполняться два условия:
1) должны существовать пределы , ;
2) должна существовать такая проколотая окрестность точки , на которой значения функции не равны .

В нашем случае функция непрерывна на всей области определения . Поэтому
.
Предел функции мы вычислим позже.

Рассмотрим условие 2). Оно является важным, если функция не является непрерывной в точке . В нашем случае не определена при . Поэтому, если бы в любой проколотой окрестности точки , существовали такие точки , для которых , то сложная функция была бы не определена в этих точках и поэтому не имела бы предела. Однако, если существует такая окрестность точки , на которой функция строго монотонна, то условие 2) выполняется автоматически. В нашем случае, строго возрастает на всей области определения. Поэтому второе условие выполнено. В самом деле, поскольку строго монотонна, то она может принимать значение только в одной точке. Это точка , которая не принадлежит ни одной проколотой окрестности точки . А если это была бы другая точка, то мы могли бы сузить проколотую окрестность, чтобы эта точка оказалась за ее пределами.

Теперь вычисляем второй предел:
.

Он не содержит корней. То есть мы свели задачу к пределу от разности дробей многочленов. Применяем методы, изложенные на странице «Решение пределов с дробями из многочленов».

Разложим знаменатель на множители и приводим дроби к общему знаменателю:
;

.
Делим числитель и знаменатель на . При имеем:
.
Находим предел:
.

Пример 2

Все примеры ⇑ Найти предел последовательности:
.

Преобразуем элемент заданной последовательности, воспользовавшись свойствами корней:
.

Читайте также  Почему usb модем постоянно отключается

Далее, если мы найдем предел функции
,
то согласно определению предела функции по Гейне, искомый предел заданной последовательности будет равняться этому пределу: , поскольку при .

Находим предел отношения многочленов, выделяя и сокращая в числителе и знаменателе множитель :

.

Неопределенность ∞ / ∞

Пример 3

Все примеры ⇑ Найти предел отношения корней:
.

Здесь, при числитель и знаменатель стремятся к . У нас неопределенность вида . Для ее раскрытия, последовательно выносим бесконечно большую часть в числителе и знаменателе за скобки. При имеем:

;

;
;

;
.

Линеаризация бесконечно малых (больших) функций

Пример 4

Все примеры ⇑ Найти предел дроби с корнями:
.

Подставим в числитель и знаменатель:
;
.
Числитель и знаменатель обращаются в нуль. Мы имеем неопределенность вида 0/0 .
Для ее раскрытия, линеаризуем бесконечно малые функции, используя формулу:
(П4.1) .

Делим числитель и знаменатель на и находим предел:

.
Здесь , .

Пример 5

Подставим в числитель и знаменатель:
;
.
Мы имеем неопределенность вида 0/0 .

Чтобы упростить вычисления, здесь удобно представить бесконечно малые функции в числителе и знаменателе в виде сумм и разностей других бесконечно малых функций:
(П5.1) .

Применим формулу:
.
Подставим :
.
Отсюда
, где .
Заметим, что .

Применим формулу:
.
Подставим :
.
Отсюда
, где .
Заметим, что .

Применим формулу:
.
Подставим :

.
Отсюда
, где .
.

Наконец, применим формулу:
.
Подставим :

.
Отсюда
, где .
.

Подставляем полученные выражения в (П5.1):
.
Делим числитель и знаменатель на x . В результате мы освобождаемся от неопределенности и находим предел непрерывной функции:

.

Можно было записать и так:

.
После чего вычислить пределы:
.

Пример 6

Все примеры ⇑ Найти предел функции с корнями при x стремящемся к бесконечности:
.

Поскольку, при , и , то мы имеем неопределенность вида +∞ – (+∞) .

Применим формулу:
(П6.1) .
Подставим :

.
Отсюда, при имеем:
(П6.2) .

В числителе опять неопределенность +∞ – (+∞) . Применяем формулу (П6.1) еще раз. Подставим :

.
Отсюда
.

Подставим в (П6.2):
,
где .
Теперь у нас неопределенность вида ∞/∞ . Для раскрытия этой неопределенности, преобразуем знаменатель. Выделим бесконечно большую часть и вынесем ее за скобки. При имеем:
;

;
;

;
;
.

Делим числитель и знаменатель в функции на . При имеем:
.
Находим предел.
При , ,

.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин. Сборник задач по высшей математики. Том 1. Москва, 1957.
Л.Д. Кудрявцев, А.Д. Кутасов, В.И. Чехлов, М.И. Шабунин. Сборник задач по математическому анализу. Том 1. Москва, 2003.
Б.П. Демидович. Сборник задач и упражнений по математическому анализу. Москва, 1997.

Автор: Олег Одинцов . Опубликовано: 02-02-2019 Изменено: 06-02-2019

Пределы, содержащие иррациональности (или, попросту говоря, корни) крайне популярны у составителей типовых расчётов и контрольных работ по высшей математике. Обычно рассматриваются три группы неопределённостей:

В данной теме мы рассмотрим все три перечисленные выше группы пределов с иррациональностями. Начнём с пределов, содержащих неопределенность вида $frac<0><0>$.

Раскрытие неопределенности $frac<0><0>$.

Схема решения стандартных примеров такого типа обычно состоит из двух шагов:

  • Избавляемся от иррациональности, вызвавшей неопределенность, домножая на так называемое "сопряжённое" выражение;
  • При необходимости раскладываем выражение в числителе или знаменателе (или и там и там) на множители;
  • Сокращаем множители, приводящие к неопределённости, и вычисляем искомое значение предела.

Термин "сопряжённое выражение", использованный выше, будет детально пояснён в примерах. Пока что останавливаться на нём подробно нет резона. Вообще, можно пойти иным путём, без использования сопряжённого выражения. Иногда от иррациональности может избавить удачно подобранная замена. Такие примеры редки в стандартных контрольных работах, поэтому на использование замены рассмотрим лишь один пример №6 (см. вторую часть данной темы).

Читайте также  Простой ответ для андроид

Нам понадобится несколько формул, которые я запишу ниже:

Кроме того, предполагаем, что читатель знает формулы для решения квадратных уравнений. Если $x_1$ и $x_2$ – корни квадратного трёхчлена $ax^2+bx+c$, то разложить его на множители можно по следующей формуле:

egin ax^2+bx+c=acdot(x-x_1)cdot(x-x_2) end

Формул (1)-(5) вполне хватит для решения стандартных задач, к которым мы сейчас и перейдём.

Так как $lim_(sqrt<7-x>-2)=sqrt<7-3>-2=sqrt<4>-2=0$ и $lim_ (x-3)=3-3=0$, то в заданном пределе мы имеем неопределённость вида $frac<0><0>$. Раскрыть эту неопределённость нам мешает разность $sqrt<7-x>-2$. Для того, чтобы избавляться от подобных иррациональностей, применяют умножение на так называемое "сопряжённое выражение". Как действует такое умножение мы сейчас и рассмотрим. Умножим $sqrt<7-x>-2$ на $sqrt<7-x>+2$:

Чтобы раскрыть скобки применим формулу №1, подставив в правую часть упомянутой формулы $a=sqrt<7-x>$, $b=2$:

Как видите, если умножить числитель на $sqrt<7-x>+2$, то корень (т.е. иррациональность) в числителе исчезнет. Вот это выражение $sqrt<7-x>+2$ и будет сопряжённым к выражению $sqrt<7-x>-2$. Однако мы не вправе просто взять и умножить числитель на $sqrt<7-x>+2$, ибо это изменит дробь $frac<sqrt<7-x>-2>$, стоящую под пределом. Умножать нужно одовременно и числитель и знаменатель:

Теперь вспомним, что $(sqrt<7-x>-2)(sqrt<7-x>+2)=3-x$ и раскроем скобки. А после раскрытия скобок и небольшого преобразования $3-x=-(x-3)$ сократим дробь на $x-3$:

Неопределенность $frac<0><0>$ исчезла. Сейчас можно легко получить ответ данного примера:

Замечу, что сопряжённое выражение может менять свою структуру – в зависимости от того, какую именно иррациональность оно должно убрать. В примерах №4 и №5 (см. вторую часть данной темы) будет использован иной вид сопряжённого выражения.

Так как $lim_(sqrt-sqrt<7x^2-19>)=sqrt<2^2+5>-sqrt<7cdot 2^2-19>=3-3=0$ и $lim_(3x^2-5x-2)=3cdot2^2-5cdot 2-2=0$, то мы имеем дело с неопределённостью вида $frac<0><0>$. Избавимся от иррациональности в знаменателе данной дроби. Для этого доможим и числитель и знаменатель дроби $frac<3x^2-5x-2><sqrt-sqrt<7x^2-19>>$ на выражение $sqrt+sqrt<7x^2-19>$, сопряжённое к знаменателю:

Вновь, как и в примере №1, нужно использовать формулу №1 для раскрытия скобок. Подставив в правую часть упомянутой формулы $a=sqrt$, $b=sqrt<7x^2-19>$, получим такое выражение для знаменателя:

Вернёмся к нашему пределу:

В примере №1 практически сразу после домножения на сопряжённое выражение произошло сокращение дроби. Здесь перед сокращением придётся разложить на множители выражения $3x^2-5x-2$ и $x^2-4$, а уж потом перейти к сокращению. Чтобы разложить на множители выражение $3x^2-5x-2$ нужно использовать формулу №5. Для начала решим квадратное уравнение $3x^2-5x-2=0$:

Подставляя $x_1=-frac<1><3>$, $x_2=2$ в формулу №5, будем иметь:

$$ 3x^2-5x-2=3cdotleft(x-left( -frac<1><3>
ight)
ight)(x-2)=3cdotleft(x+frac<1><3>
ight)(x-2)=left(3cdot x+3cdotfrac<1><3>
ight)(x-2) =(3x+1)(x-2). $$

Теперь настал черёд разложить на множители выражение $x^2-4$. Воспользуемся формулой №1, подставив в неё $a=x$, $b=2$:

Используем полученные результаты. Так как $x^2-4=(x-2)(x+2)$ и $3x^2-5x-2=(3x+1)(x-2)$, то:

Сокращая на скобку $x-2$ получим:

Всё! Неопределённость исчезла. Ещё один шаг и мы приходим к ответу:

В следующем примере рассмотрим случай, когда иррациональности будут присутствовать как в числителе, так и в знаменателе дроби.

Так как $lim_(sqrt-sqrt)=sqrt<9>-sqrt<9>=0$ и $lim_(sqrt-sqrt<5x-9>)=sqrt<16>-sqrt<16>=0$, то мы имеем неопределённость вида $frac<0><0>$. Так как в данном случае корни наличествуют и в знаменателе, и в числителе, то дабы избавиться от неопределённости придется домножать сразу на две скобки. Во-первых, на выражение $sqrt+sqrt$, сопряжённое числителю. А во-вторых на выражение $sqrt-sqrt<5x-9>$, сопряжённое знаменателю.

Читайте также  Санлайт распродажа до 70 процентов

Раскрывая скобки с помощью формулы №1, получим:

Возвращаясь к рассматриваемому пределу, имеем:

Осталось разложить на множители выражения $-x^2+x+20$ и $x^2-8x+15$. Начнем с выражения $-x^2+x+20$. Чтобы разложить его на множители требуется решить уравнение $-x^2+x+20=0$, а затем воспользоваться формулой №5:

Для выражения $x^2-8x+15$ получим:

Подставляя полученные разожения $-x^2+x+20=-(x-5)(x+4)$ и $x^2+8x+15=(x-3)(x-5)$ в рассматриваемый предел, будем иметь:

В следующей (второй) части рассмотрим ещё пару примеров, в которых сопряжённое выражение будет иметь иной вид, нежели в предыдущих задачах. Главное, помните, что цель использования сопряжённого выражения – избавиться от иррациональности, вызывающей неопределённость.

Среди задач на решение пределов попадаются пределы с корнями. В результате подстановки значения $ x $ в функцию получаются неопределенности трёх видов:

Перед тем, как приступить к решению определите тип своей задачи

Тип 1 $ igg [frac<0> <0>igg ] $

Для того, чтобы раскрывать такие неопределенности необходимо домножить числитель и знаменатель дроби на сопряженное к выражению содержащему корень.

Пример 1
Найти предел с корнем $$ lim limits_ frac<4-sqrt> $$
Решение

Подставляем $ x o 4 $ в подпределельную функцию:

Получаем неопределенность $ [frac<0><0>] $. Домножим числитель и знаменатель на выражение сопряженное к нему, так как он содержит корень: $ 4+sqrt $

Используя формулу разности квадратов $ (a-b)(a+b) = a^2-b^2 $ приведем предел к следующему виду:

Раскрываем скобки в знаменателе и упрощаем его:

Сокращам функцию в пределе на $ x-4 $, имеем:

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ $$ lim limits_ frac<4-sqrt> = -8 $$

Тип 2 $ igg [frac<infty> <infty>igg ] $

Пределы с корнем такого типа, когда $ x o infty $ вычислять нужно по-другому в отличии от предыдущего случая. Необходимо определить старшие степени выражений числителя и знаменателя. Затем вынести самую старшую из двух степеней за скобки и сократить.

Пример 2
Решить предел с корнем $$ lim limits_ frac<sqrt> $$
Решение

Вставляем $ x o infty $ в предел и получаем $ [frac<infty><infty>] $. Определяем, что в числителе старшая степень это $ x^2 $, а в знаменателе $ sqrt $. Выносим их за скобки:

Теперь выполняем сокращение:

Снова подставляем $ x o infty $ в предел, имеем:

Ответ $$ lim limits_ frac<sqrt> = infty $$

Тип 3 $ igg [infty-infty igg ] $

Этот вид пределов часто попадается в дополнительных заданиях на экзамене. Ведь часто студенты не правильно вычисляют пределы такого типа. Как решать пределы с корнями данного вида? Всё просто. Необходимо умножить и разделить функцию, стоящую в пределе, на выражение сопряженное к ней.

Пример 3
Вычислить предел корня $$ lim limits_ sqrt-x $$
Решение

При $ x o infty $ в пределе видим:

После домножения и разделения на сопряженное имеем предел:

Упростим числитель, используя формулу разности квадратов: $ (a-b)(a+b)=a^2-b^2 $

После раскрытия скобок и упрощения получаем:

Далее выносим $ x $ за скобки и сокращаем:

Снова подставляем $ x o infty $ в предел и вычисляем его:

Ссылка на основную публикацию
Adblock
detector