Прямоугольный равнобедренный треугольник картинки

Равнобедренный прямоугольный треугольник — это треугольник, являющийся одновременно равнобедренным и прямоугольным. В этом треугольнике каждый внутренний угол равен 45°:

α = β = 45 ∘ = π 4 , <displaystyle alpha =eta =45^<circ >=<frac <pi ><4>>!,,>

третий внутренний угол — прямой:

γ = 180 ∘ − 2 α = 90 ∘ = π 2 , <displaystyle gamma =180^<circ >-2alpha =90^<circ >=<frac <pi ><2>>!,,>

Внутренние углы имеют соотношение 1 : 1 : 2.

Каждая боковая сторона равна:

a = b = c 2 2 , <displaystyle a=b=<frac <2>>><2>>!,,>

а основание равно:

c = a 2 , <displaystyle c=a<sqrt <2>>!,,>

стороны соотносятся как 1 : 1 : √2. Боковые стороны являются катетами, основание — гипотенузой.

Высота, опущенная на гипотенузу, равна её половине:

h c = a 2 2 = c 2 = R , <displaystyle h_=<frac <2>>><2>>=<frac <2>>=R!,,>

Содержание

Периметр [ править | править код ]

Периметр равнобедренного прямоугольного треугольника равен

P = a + b + c = a ( 2 + 2 ) . <displaystyle P=a+b+c=a(2+<sqrt <2>>)!,.>

Площадь [ править | править код ]

Площадь равнобедренного прямоугольного треугольника равна

S = a 2 2 = c 2 4 . <displaystyle S=<frac <2>><2>>=<frac <2>><4>>!,.>

Также площадь равнобедренного прямоугольного треугольника можно выразить при помощи формулы Герона:

S = p ( p − a ) 2 ( p − a 2 ) , <displaystyle S=<sqrt <2>(p-a<sqrt <2>>)>>!,,>

Где p — полупериметр равнобедренного прямоугольного треугольника:

p = P 2 = a ( 1 + 2 2 ) . <displaystyle p=<frac

<2>>=aleft(1+<frac <sqrt <2>><2>>
ight)!,.>

Общие характеристики [ править | править код ]

Описанная и вписанная окружности [ править | править код ]

Равнобедренный прямоугольный треугольник, как и все треугольники, является бицентрическим. В нём:

Здесь r — радиус вписанной окружности, R — радиус описанной окружности, a — катеты и c — гипотенуза треугольника.

Расстояние между центрами вписанной и вписанной окружности d равен радиусу вписанной окружности r и задается уравнением Эйлера:

d 2 = R ( R − 2 r ) = a 2 2 ( 3 − 2 2 ) <displaystyle d^<2>=R(R-2r)=<frac <2>><2>>left(3-2<sqrt <2>>
ight)!,> d = r = a 2 ( 2 − 2 ) = a 1 2 ( 3 − 2 2 ) ≈ 0 , 2928932 a . <displaystyle d=r=<frac <2>>left(2-<sqrt <2>>
ight)=a<sqrt <<frac <1><2>>left(3-2<sqrt <2>>
ight)>>approx 0,2928932,a!,.>

Равнобедренный треугольник, имеющий равные описанную и вписанную окружность и одинаковые расстояния между их центрами ( d = r <displaystyle d=r,> ), имеет углы:

α = β = a r c t g ⁡ 4 − 2 2 8 2 − 11 ≈ 72 , 968751 ∘ , <displaystyle alpha =eta =operatorname <frac <4-<sqrt <2>>><<sqrt <2>><sqrt <8<sqrt <2>>-11>>>>approx 72,968751^<circ >!,,> γ = 180 ∘ − 2 α ≈ 34 , 062496 ∘ . <displaystyle gamma =180^<circ >-2alpha approx 34,062496^<circ >!,.>

Читайте также  Пользователь заходит под временным профилем

Покрытие евклидовой плоскости [ править | править код ]

Прямоугольный равнобедренный треугольник является одним из трех треугольников, которые покрывают евклидову плоскость. Только равносторонними треугольниками (треугольник 60-60-60), который является правильным многоугольником, можно правильно покрыть плоскость. Третий треугольник, который неправильно покрывает плоскость, представляет собой прямоугольный треугольник 30-60-90. Эти три треугольника — треугольники Мёбиуса, что означает, что они покрывают плоскость, не перекрываясь, зеркалируя их стороны (см. Треугольная группа).

Полиформы в головоломках [ править | править код ]

Полиформы, основными фигурами которых являются равнобедренные прямоугольные треугольники, — это поляболы.

Пять равнобедренных прямоугольных треугольников вместе с одним квадратом и одним параллелограммом образуют головоломку пазл.

Определение

Равнобедренный треугольник – это треугольник, боковые стороны которого равны. Прямоугольный треугольник содержит в себе прямой угол. Значит равнобедренный прямоугольный треугольник – это прямоугольный треугольник, катеты которого равны.

Гипотенуза прямоугольного треугольника всегда больше катета. Это следует из теоремы о соотношениях сторон и углов треугольника. Значит, в прямоугольном треугольнике только гипотенуза может быть основанием, а величина гипотенузы будет соответствовать длине основания.

Рис. 1. Равнобедренный прямоугольный треугольник

Свойства

Поговорим подробнее о свойствах и формулах. Не совсем ясно, как будут пролегать высоты в таком треугольнике, все привыкли пользоваться свойством, которое говорит о том, что в равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой и биссектрисой.

В равнобедренном прямоугольном треугольнике такая высота всегда будет направлена из прямого угла к гипотенузе. А две другие высоты будут совпадать с катетами.

Рис. 2. Высота прямоугольного равнобедренного треугольника

Если к гипотенузе прямоугольного равнобедренного треугольника провести высоту, то она разделит треугольник на два, равных между собой, равнобедренных прямоугольных треугольника.

Теорема Пифагора для равнобедренного треугольника выглядит немного более упрощенной:

Квадрат гипотенузы равен удвоенному квадрату катета. Это значительно упрощает решение.

Вообще, любые задачи, связанные с прямоугольными равнобедренными треугольниками решаются очень просто. Любого значения достаточно, чтобы определить все остальное. Значения любого из катетов достаточно, чтобы определить гипотенузу через упрощенную теорему Пифагора, а затем найти периметр и площадь прямоугольного равнобедренного треугольника.

Через гипотенузу можно найти катет через тригонометрическую функцию, так как все углы прямоугольного равнобедренного треугольника заранее известны: один угол 90 градусов и два по 45.

Рис. 3. Углы прямоугольного равнобедренного треугольника

Разберем подробно, почему известны все углы. В любом прямоугольном треугольнике сумма острых углов равна 90 градусам. Это следует из общей суммы углов в треугольнике, которая всегда равна 180 градусам.

Читайте также  При просмотре 3d изображение двоится

При этом углы при основании равнобедренного треугольника, а в нашем случае это всегда гипотенуза, всегда равны. Значит, чтобы найти каждый из острых углов при гипотенузе, нужно их сумму, т.е. 90 градусов, разделить пополам. Получается, что каждый из углов при гипотенузе прямоугольного равнобедренного треугольника будет равен 45 градусам.

Можно рассмотреть это свойство и с другой стороны: если сумма двух углов треугольника равняется 90 градусам и эти углы равны между собой, то этот треугольник является равнобедренным и прямоугольным.

Из этого же свойства проистекает равенство синусов и косинусов всех острых углов между собой, а так же равенство тангенсов и котангенсов.

То есть, синус любого острого угла треугольника равен косинусу любого острого угла треугольника и равен $$<sqrt<2>over2>$$. Тангенс любого острого угла треугольника равен котангенсу любого острого угла треугольника и равен 1.

Что мы узнали?

Мы подробно поговорили о всех взаимосвязях свойств прямоугольного и равнобедренного треугольника. А также о том, как эти связи проявляются в равнобедренном прямоугольном треугольнике. Разобрали в подробностях, почему любые задачи на нахождение параметров прямоугольного равнобедренного треугольника легко решаются и выделили основную и единственную проблему в решениях таких задач: трудность визуального восприятия.

Содержание:

  1. Свойства равнобедренного треугольника.
  2. Признаки равнобедренного треугольника.
  3. Формулы равнобедренного треугольника:
    • формулы длины стороны;
    • формулы длины равных сторон;
    • формулы высоты, медианы, биссектрисы равнобедренного треугольника.

    Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона — основанием.

    АВ = ВС — боковые стороны

    Свойства равнобедренного треугольника

    Свойства равнобедренного треугольника выражаются через 5 теорем:

    Теорема 1. В равнобедренном треугольнике углы при основании равны.

    Доказательство теоремы:

    Рассмотрим равнобедренный Δ ABC с основанием АС.

    Боковые стороны равны АВ = ВС,

    Следовательно углы при основании ∠ BАC = ∠ BСA.

    Теорема о биссектрисе, медиане, высоте, проведенной к основанию равнобедренного треугольника

    • Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
    • Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
    • Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

    Доказательство теоремы:

    • Дан Δ ABC.
    • Из точки В проведем высоту BD.
    • Треугольник разделился на Δ ABD и ΔCBD.Эти треугольники равны, т.к. гипотенузы и общий катет у них равны (теорема Пифагора).
    • Прямые АС и BD называются перпендикуляром.
    • В Δ ABDи ΔBCD∠ BАD = ∠ BСD(из Теоремы 1).
    • АВ = ВС — боковые стороны равны.
    • Стороны АD = СD, т.к. точка Dотрезок делит пополам.
    • Следовательно Δ ABD =ΔBCD.
    • Биссектриса, высота и медиана это один отрезок — BD

    Вывод:

    1. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
    2. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
    3. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и высотой.
    Читайте также  Программа для скачивания образа на флешку

    Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.

    • Теорема 5. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

    Доказательство теоремы:

    Доказательство от противного.

    • Пусть треугольники не равны (а то треугольники были равны по первому признаку).
    • Пусть Δ A1B1C2 = Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Δ A1C1C2 и Δ B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точку D прямой C1C2 можно провести только одну перпендикулярную ей прямую.
    • Отсюда пришли к противоречию и теорему доказали.

    Признаки равнобедренного треугольника

    1. Если в треугольнике два угла равны.
    2. Сумма углов треугольника 180°.
    3. Если в треугольнике биссектриса является медианой или высотой.
    4. Если в треугольнике медиана является биссектрисой или высотой.
    5. Если в треугольнике высота является медианой или биссектрисой.

    Формулы равнобедренного треугольника

    Формулы сторон равнобедренного треугольника

    • b — сторона (основание)
    • а — равные стороны
    • a — углы при основании
    • b — угол образованный равными сторонами

    Формулы длины стороны (основания — b):

    • b = 2a sin( eta /2)= a sqrt
    • b = 2a cos alpha

    Формулы длины равных сторон(а):

    Формулы высоты, медианы, биссектрисы равнобедренного треугольника

    • L — высота=биссектриса=медиана
    • b — сторона (основание)
    • а — равные стороны
    • a — углы при основании
    • b — угол образованный равными сторонами

    Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

    Формула высоты, биссектрисы и медианы, через стороны, (L):

    Площадь равнобедренного треугольника

    • b — сторона (основание)
    • а — равные стороны
    • h — высота

    Формула площади треугольника через высоту h и основание b, (S):

    Ссылка на основную публикацию
    Adblock
    detector