Равномерно распределенная нагрузка это

При расчетах встречается нагрузка, распределенная равномерно или неравномерно по определенному закону.

Интенсивность нагрузки q — это нагрузка, приходящаяся на единицу длины (на 1 метр). Размерность интенсивности распределенной нагрузки [q] = H/м.

Равномерно-распределенная нагрузка — имеет постоянную по длине интенсивность q.

Неравномерно-распределенная нагрузка имеет переменную интенсивность q.

Равнодействующая Q в этом случае равна площади фигуры, по которой распределена нагрузка, например для треугольной нагрузки

Равнодействующая действует в центре тяжести фигуры, т. е. для треугольника — на расстоянии a/3 от основания.

Воздействие на детали, конструкции, элементы механизмов может быть задано распределенными нагрузками: в плоской системе задается интенсивность действия по длине конструкции, в пространственной системе – по площади.

Размерность для линейной нагрузки — Н/м, для нагрузки распределенной по площади — Н/м 2 , для объемной (например при учете собственного веса элементов конструкции) — Н/м 3 .

Например, на рисунке 1.23, а приведена равномерно распределенная по длине AB нагрузка интенсивностью q, измеряемая в Н/м. Эта нагрузка может быть заменена сосредоточенной силой

приложенной в середине отрезка AB.

На рисунке 1.23, б показана равномерно убывающая (возрастающая) нагрузка, которая может быть заменена равнодействующей силой

приложенной в точке C, причем AC = 2/3AB.

В произвольном случае, зная функцию q(x) (рисунок 1.23, в), рассчитываем эквивалентную силу

Эта сила приложена в центре тяжести площади, ограниченной сверху от балки AB линией q(x).



Примером может служить расчет усилий, разрывающих стенки баллона со сжатым газом. Определим результирующую силу давления в секторе трубы при интенсивности q [Н/м]; R – радиус трубы, 2α – центральный угол, ось Ox – ось симметрии (рисунок 1.24).

Выделим элемент сектора с углом ∆φ и определим силу ∆Q, действующую на плоский элемент дуги:

Читайте также  Системные требования нхл 15

В силу симметрии элемента трубы (с дугой AB) относительно оси Ox проекция результирующей силы на ось Oy:

где АВ – хорда, стягивающая концы дуги.

Для цилиндрической емкости высотой h и внутренним давлением P на стенки действует нагрузка интенсивностью q = p [Н/м, 2 ]. Если цилиндр рассечен по диаметру (рисунок 1.25), то равнодействующая этих сил равна F = q ∙ d ∙ h ( d – внутренний диаметр) или

Разрывающие баллон по диаметру усилия:

Если принять a – толщина стенки, то (пренебрегая усилиями в крышке и дне цилиндра) растягивающее напряжение в стенке равно

Теоретическая механика

Распределенные нагрузки

Как мы уже знаем, любая сила характеризуется тремя свойствами: модулем (скалярной размерностью), вектором (направлением в пространстве) и точкой приложения. Для того, чтобы иметь полное представление о характере и последствиях воздействия любой силы на тело или элемент конструкции, необходимо знать — какова величина этой силы, куда она направлена и к какой точке приложена.
В действительности сила не может быть приложена к точке, поскольку точка — безразмерная, бесконечно малая единица пространства, поэтому фактически силы воздействуют на очень малую площадку, размерами которой пренебрегают. Такие силы (приложенные к ничтожно малой площадке тела) называют сосредоточенными .

В реальности часто встречаются силы, приложенные не к точке, а к объему или поверхности тела, например сила тяжести, давления ветра, воды и т. п., т. е. нагрузку воспринимает не бесконечно малая площадка, а значительная площадь или объем тела. Такие силы называют распределенными .
Примером распределенной силы (обычно употребляют выражение «распределенная нагрузка») может послужить выпавший на крышу дома снег. Сила тяжести снежного покрова давит на всю поверхность крыши, нагружая одинаково (или неодинаково) каждую единицу ее площади, а не какую-либо точку.

Читайте также  Приложение кнопки домой на андроид

Плоская система распределенных сил характеризуется ее интенсивностью, обычно обозначаемой латинской буквой q .
Интенсивность — это сила, приходящаяся на единицу длины (или площади) нагруженного участка.
Интенсивность в системе единиц СИ выражается в ньютонах на метр (Н/м) или, соответственно, в ньютонах на квадратный метр (для нагрузки, действующей на площадь).

Интенсивность воздействия силы на площадь характеризует такие физические понятия, как давление и напряжение. В плоской системе рассматривается интенсивность действия силы на единицу длины.

Распределенная нагрузка, имеющая постоянную интенсивность по всей длине участка называется равномерно распределенной (см. рисунок 1) .

При решении задач статики распределенную нагрузку заменяют ее равнодействующей. Модуль равнодействующей равномерно распределенной нагрузки равен Q = ql (см. рисунок) .
Равнодействующая равномерно распределенной нагрузки Q прикладывается в середине отрезка АВ .

Распределенная нагрузка, имеющая переменную интенсивность, называется неравномерно распределенной (рис. 2) .
Примером такой нагрузки может служить меняющееся по высоте давление воды на плотину или снег, лежащий на крыше неровным слоем.
Определение точки С приложения равнодействующей неравномерно распределенной нагрузки производится путем геометрических расчетов и построений. Равнодействующая сила Q при таких нагрузках равна площади фигуры, охватываемой эпюрой нагрузки, а точка С приложения равнодействующей расположена в центре тяжести этой фигуры.

Нагрузки, распределенные по поверхности (по площади), характеризуются давлением, т. е. силой, приходящейся на единицу площади. В системе единиц СИ давление измеряется в Паскалях (Па) или ньютонах на квадратный метр (Н/м 2 ).

Пример решения задачи с распределенной нагрузкой

Задача: Балка находится в равновесии под действием сосредоточенной силы F = 100 Н и равномерно распределенной нагрузки q = 60 Н/м (см. схему 3) .
Необходимо определить реакцию RВ опоры В .

Решение .
Поскольку по условию задачи необходимо определить реакцию опоры В , составим уравнение моментов сил относительно опоры А , учитывая, что равномерно распределенную нагрузку можно заменить сосредоточенной силой:
Q = ql , где l = (10 — 5) метров — часть балки, к которой приложена распределенная нагрузка .
Точка приложения сосредоточенной силы Q расположена в середине той части балки, к которой приложена распределенная нагрузка; плечо этой силы относительно опоры А будет равно: h = (10 — 5)/2 = 2,5 м.
Cоставляем уравнение моментов сил относительно опоры А из условия, что балка находится в состоянии равновесия (уравнение равновесия) .

  • сила RВ создает относительно точки А положительный момент, плечо которого равно 10м;
  • сила F создает относительно точки А отрицательный момент, плечо которого равно 5 м;
  • распределенная нагрузка q создает (посредством силы Q и плеча h ) относительно точки А отрицательный момент.
Читайте также  Симс 4 дополнительные профессии

Получаем уравнение равновесия балки, в котором лишь одна неизвестная величина ( RВ ) :

ΣM = 10RВ — qlh — 5F = 10RВ — q(10-5)(10-5)/2 — 5F = 0 , откуда находим искомую реакцию опоры RВ :

Ссылка на основную публикацию
Adblock
detector