Содержание
С помощью этого онлайн калькулятора можно найти угол между прямой и плоскостью. Дается подробное решение с пояснениями. Для вычисления угла между прямой и плоскостью введите элементы уравнения и плоскости в ячейки и нажимайте на кнопку "Решить". Теоретическую часть смотрите ниже.
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Угол между прямой и плоскостью − теория, примеры и решения
В данной статье мы рассмотрим задачу определения угла φ между прямой L, заданной каноническим уравнением
(1) |
и плоскостью P, заданной общим уравнением
Ax+By+Cz+D=0. | (2) |
где q=(m, l, p) направляющий вектор прямой L, а n=(A, B, C) нормальный вектор плоскости P.
Нормальный вектор плоскости n и направляющий вектор прямой q могут составить острый угол, прямой угол и тупой угол.
Вариант 1. Угол ψ между нормальным вектором плоскости n и направляющим вектором прямой q острый (Рис.1):ψ Вариант 2. Угол ψ между нормальным вектором плоскости n и направляющим вектором прямой q:ψ=90°. Тогда имеем:
φ=0. |
0=cosψ=sinφ. |
Вариант 3. Угол ψ между нормальным вектором плоскости n и направляющим вектором прямой q тупой (Рис.2):ψ>90°.
cosψ=cos(90+φ)=−sinφ. | (4) |
Поскольку угол φ между прямой и плоскостью всегда меньше или равно 90°, то
sinφ=⃒ cosψ ⃒ | (5) |
Из определения скалярного произведения векторов имеем:
(6) |
Из уравнений (5) и (6) можно найти синус угла φ
(7) |
(8) |
Из формулы (8) можно найти угол между прямой L и плоскостью P.
Пример 1. Найти угол между прямой L:
(9) |
(10) |
Направляющий вектор прямой L имеет вид q=(m, p, l)=(1, 3, 2). Нормальный вектор плоскости P имеет вид n=(A, B, C)=(2, 6, 1).
Поскольку угол φ между прямой L и плоскостью P является дополнительным к углу ψ между направляющим вектором прямой q=(m,p,l) и нормальным вектором плоскости n=(A,B,C), то cosψ=sinφ. Из определения скалярного произведения (q,n)=|q||n|cosψ. Тогда для угла между прямой L и плоскостью P получим следующую формулу:
. | (11) |
Подставляя значения A, B, C, m, p, l в (11), получим:
. |
Упростим и решим:
. |
. |
Пример 2. Найти угол между прямой L:
(12) |
(13) |
Направляющий вектор прямой L имеет вид q=(m, p, l)=(4, 1, 3). Нормальный вектор плоскости P имеет вид n=(A, B, C)=(8, 2, 6).
Поскольку угол φ между прямой L и плоскостью P является дополнительным к углу ψ между направляющим вектором прямой q=(m,p,l) и нормальным вектором плоскости n=(A,B,C), то cosψ=sinφ. Из определения скалярного произведения (q,n)=|q||n|cosψ. Тогда для угла между прямой L и плоскостью P получим следующую формулу:
. | (14) |
Подставляя значения A, B, C, m, p, l в (14), получим:
. |
Упростим и решим:
. |
. |
Замечание. Мы могли бы избежать вышеизложенных вычислений, если заметили, что векторы n и q коллинеарны. Действительно:
2·(4, 1, 3)=(8, 2, 6). |
В этом случае прямая L и плоскость P перпендикулярны, т. е. угол между ними равен 90°.
Нахождение угла между прямой и плоскостью.
Давайте повторим определение угла между прямой и плоскостью.
Определение. Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.
Пусть даны плоскость γ и прямая a, которая пересекает эту плоскость и не перпендикулярна к ней.
Построим угол между прямой a и плоскостью γ:
- Из любой удобной для нас точки прямой a опустим перпендикуляр к плоскости γ;
- Через точки оснований наклонной и перпендикуляра проведем прямую b . Прямая b — проекция прямой a на плоскость γ;
- Острый угол между прямыми a и b – это угол между прямой a и плоскостью γ, т.е. ∠(a;b)= ∠(a;γ) , где ∠(a;b) — угол между прямыми а и b; ∠(a;γ) — угол между прямой а и плоскостью γ.
Для решения задач с помощью метода координат нам необходимо вспомнить следующее:
- Направляющим вектором прямойa называется ненулевой вектор , который лежит либо на прямой a, либо на прямой , параллельной a;
- Вектор нормали – это ненулевой вектор , перпендикулярный плоскости γ. Прямая s, на которой лежит вектор нормали, перпендикулярна плоскости γ;
3. Если известны координаты направляющего вектора < a1; b1; c1> и вектора нормали
, то угол между прямой а и плоскостью γ вычисляется по формуле, которую сейчас выведем.
Нам известна формула нахождения угла между прямыми:
; (1)
∠(s; a) = 90°-∠(a;b), тогда cos∠(s;a)=cos (90°-∠(a;b))=sin ∠(a;b) ; (2)
Из (1) и (2) => ; (3)
, где – угол между векторами m и n; (4)
Подставляем (4) в (3) и т.к. ∠(a;b)= ∠(a;γ), то получаем:
4. Если координаты вектора нормали неизвестны, то нам необходимо знать уравнение плоскости.
Любая плоскость в прямоугольной системе координат может быть задана уравнением
где хотя бы один из коэффициентов a, b, c отличен от нуля. Эти коэффициенты и будут координатами вектора нормали, т.е. .
Алгоритм решения задач на нахождение угла между прямой и плоскостью с помощью метода координат:
- Делаем рисунок, на котором отмечаем прямую и плоскость;
- Вводим прямоугольную систему координат ;
- Находим координаты направляющего вектора по координатам его начала и конца ;
- Находим координаты вектора нормали к плоскости;
- Подставляем полученные данные в формулу синуса угла между прямой и плоскостью;
- Находим значение самого угла.
Рассмотрим задачу:
1. В кубе ABCDA1B1C1D1 найдите тангенс угла между прямой AC1 и плоскостью BDD1 .
Решение:
1. Введем прямоугольную систему координат с началом координат в точке D.
2. Найдем координаты направляющего вектора АС1. Для этого сначала определим координаты точек А и С1:
А(0; 1; 0);
С1(1; 0; 1).
<1; -1; 1>.
3. Найдем координаты вектора нормали к плоскости BB1D1. Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости:
D(0; 0; 0);
D1(0; 0; 1);
В(1; 1; 0);
Уравнение плоскости имеет вид ax+by+cz+d=0. Подставим в это уравнение координаты точек:
D: a⋅0+b⋅0+c⋅0+d=0;
D1: a⋅0+b⋅0+c⋅1+d=0;
B: a⋅1+b⋅1+c⋅0+d=0.
Получили систему из трех уравнений:
Подставим в уравнение: a⋅x+(-a)⋅y+0⋅z+0 = 0;
a⋅x-a⋅y = 0; |:a
x-y = 0.
Т.о., вектор нормали к плоскости BDD1 имеет координаты:
<1;-1; 0>.
4. Найдем синус между прямой АС1 и плоскостью BDD1:
5. Воспользуемся основным тригонометрическим тождеством и найдем косинус угла между прямой АС1 и плоскостью BDD1:
6. Найдем тангенс угла между прямой АС1 и плоскостью BDD1:
;
.
Ответ: .
2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите синус угла между прямой BD и плоскостью SBC.
1. Введем прямоугольную систему координат с началом координат в точке B.
2. Найдем координаты направляющего вектора BD . Для этого сначала определим координаты точек B и D:
3. Найдем координаты вектора нормали к плоскости SBC. Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости SBC:
Как получили координаты точки S ?
Из точки S опустили перпендикуляр к плоскости основания ABC. Точку пересечения обозначили О. Точка О — проекция точки S на плоскость ABC. Ее координаты по осям х и у будут первыми двумя координатами точки S.
Узнав значение высоты пирамиды, мы нашли третью координату точки S (по оси z)
Треугольник SOB — прямоугольный, следовательно, по теореме Пифагора:
Уравнение плоскости имеет вид ax+by+cz+d=0. Подставим в это уравнение координаты точек:
Получили систему из трех уравнений:
Подставим в уравнение:
Т.о., вектор нормали к плоскости SBD имеет координаты:
.
4. Найдем синус между прямой BD и плоскостью SBD:
Ответ: .
Автор: Аникина Марина
Комментарии к этой заметке:
Добавить Ваш комментарий
Подпишитесь на рассылку и получайте ссылки на свежие уроки, статьи и новости
Хотите внести свою лепту в его развитие!? Тогда Вам сюда!
Формула вычисления угла между прямой и плоскостью
Если в пространстве заданы направляющий вектор прямой L
и уравнение плоскости
A x + B y + C z + D = 0,
то угол между этой прямой и плоскостью можно найти используя формулу
sin φ = | | A · l + B · m + C · n | |
√ A 2 + B 2 + C 2 · √ l 2 + m 2 + n 2 |
Вывод формулы для вычисления угла между прямой и плоскостью
Из уравнения прямой можно найти направляющий вектор прямой
Из уравнения плоскости вектор нормали плоскости имеет вид
Из формул скалярного произведения векторов найдем косинус угла между нормалью к плоскости и направляющим вектором прямой
cos ψ = | | q · s | |
| s | · | q | |
Так как φ = 90° — ψ , то синус угла между прямой и плоскостью sin φ = cos ψ .
Расписав скалярное произведение векторов и модуль векторов через их координаты, получим формулу для вычисления угла между прямой и плоскостью.
Пример вычисления угла между прямой и плоскостью
Найти угол между прямой
x — 4 | = | y + 2 | = — | z — 6 |
2 | 6 | 3 |
и плоскостью x — 2 y + 3 z + 4 = 0.
Из уравнения прямой найдем направляющий вектор прямой
Из уравнения плоскости найдем вектор нормали плоскости
Воспользовавшись формулой, найдем угол между прямой и плоскостью
sin φ = | | 2 · 1 + 6 · (-2) + (-3) · 3 | | = |
√ 2 2 + 6 2 + (-3) 2 · √ 1 2 + (-2) 2 + 3 2 |
= | 2 — 12 — 9 | √ 4 + 36 + 9 · √ 1 + 4 + 9 = |-19| √ 49 · √ 14 = 19 7√ 14
Ответ: sin φ = 19 7√ 14 .
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.