Сколько диагоналей в многоугольнике

Что ты хочешь узнать?

Ответ

Проверено экспертом

Из одной вершины вторым концом диагонали не будут являться сама вершина и 2 ее соседние вершины, т.е. всего 3 точки. Значит, возможных концов диагоналей из одной вершины на 3 меньше общего числа вершин.

Умножаем на число вершин, т.к. началом диагонали может служить любая вершина.

При таком подсчете каждая диагональ учитывается 2 раза, т.к. диагональ соединяет 2 вершины многоугольника и подсчет выполняется для каждой вершины. Поэтому полученный результат нужно разделить на 2.

Семиугольник: 7*(7-3)/2 = 7*4/2 = 14
Десятиугольник: 10*(10-3)/2 = 5*7 = 35
Стоугольник: 100*(100-3)/2 = 50*97 = 4850

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Количество источников, использованных в этой статье: 14. Вы найдете их список внизу страницы.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Нахождение числа диагоналей является важнейшим навыком, который пригодится при решении геометрических задач. Это не так сложно, как кажется – просто нужно запомнить формулу. Диагональ – это отрезок, соединяющий любые две несмежные вершины многоугольника. [1] Многоугольник – это любая фигура с как минимум тремя сторонами. При помощи несложной формулы можно найти количество диагоналей в любом многоугольнике, например, с 4 сторонами или с 4000 сторон.

мы стараемся находить самые интересные вопросы и давать на них исчерпывающие ответы. заходите к нам почаще и вы всегда будете находить для себя что-нибудь новое и интересное.

темы вопросов

актуальные комментарии к ответам

Диагональ в многоугольнике (полиэдре) — отрезок, соединяющий любые две несмежные вершины, другими словами, вершины, не принадлежащие одной стороне многоугольника (одному ребру полиэдра).

Читайте также  Разобрать слово ключ по звукам

У полиэдров различают диагонали граней (рассматриваемых как плоские многоугольники) и пространственные диагонали, выходящие за границы граней. У полиэдров, имеющих треугольные грани есть только пространственные диагонали.

Диагоналей нет у треугольника на плоскости и у тетраэдра в пространстве, так как все вершины этих фигур попарно связаны сторонами (ребрами).

Количество диагоналей N у многоугольника просто вычислить по формуле:

где n — число вершин многоугольника. По этой формуле несложно отыскать, что

  • у треугольника — 0 диагоналей
  • у прямоугольника — 2 диагонали
  • у пятиугольника — 5 диагоналей
  • у шестиугольника — 9 диагоналей
  • у восьмиугольника — 20 диагоналей
  • у 12-угольника — 54 диагонали
  • у 24-угольника — 252 диагонали
  • Количество диагоналей полиэдра с числом вершин n просто подсчитать только для варианта, когда в каждой верхушке полиэдра сходится однообразное число ребер k. Тогда есть возможность воспользоваться формулой:

    которая даем сумманое число пространственных и граневых диагоналей. Отсюда есть возможность отыскать, что

  • у тетраэдра (n=4, k=3) — 0 диагоналей
  • у октаэдра (n=6, k=4) — 3 диагонали (все пространственные)
  • у куба (n=8, k=3) — 16 диагоналей (12 граневых и 4 пространственных)
  • у икосаэдра (n=12, k=5) — 36 диагоналей (все пространственные)
  • у додекаэдра (n=20, k=3) — 160 диагоналей (25 граневых и 135 пространственных)
  • В том случае в различных верхушках полиэдра сходится различное число ребер, подсчет приметно усложняется и должен проводится персонально для каждого варианта.

    Фигуры с равными диагоналями

    На плоскости существует два правильных многоугольника, у каких все диагонали равны меж собой. Это квадрат и верный пятиугольник. У квадрата две схожих диагонали, пересекающихся в центре под прямым углом. У правильного пятиугольника 5 схожих диагоналей, которые совместно образуют набросок пятиконечной звезды (пентаграммы).

    Единственный верный полиэдр, у которого все диагонали равны меж собой — верный восьмигранник октаэдр. У него три диагонали, которые попарно перпендикулярно пересекаются в центре. Все диагонали октаэдра — пространственные (диагоналей граней у октаэдра нет, т.к. у него треугольные грани).

    Читайте также  Синусный фильтр для преобразователя частоты

    Кроме октаэдра еще есть один верный полиэдр, у которого все пространственные диагонали равны меж собой. Это куб (гексаэдр). У куба четыре схожих пространственных диагонали, которые также пересекаются в центре. Угол меж дигоналями куба состаляет или arccos(1/3) ≈ 70,5° (для пары диагоналей, проведенных к смежным вершинам), или arccos(-1/3) ≈ 109,5° (для пары диагоналей, проведенных к несмежным вершинам).

  • ru.wikipedia.org — Википедия: Диагональ
  • dic.academic.ru — иллюстрация различия меж граневой и пространственной диагоналями полиэдра
  • Дополнительно в базе данных New-Best.comа:

  • Как отыскать диагональ прямоугольника?
  • Сколько вершин, ребер и граней у тетраэдра?
  • Сколько вершин, ребер и граней у куба (гексаэдра)?
  • Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    Добавить комментарий Отменить ответ

    Для отправки комментария вам необходимо авторизоваться.

    Ссылка на основную публикацию
    Adblock detector