Светодиодный драйвер для фонарика

Хочу поделиться решением для питания светодиода типа XM-L, XM-L2, XP-L, XP-G, XP-G2, Nichia 219 от одной литиевой батареи. Такие драйверы я давно применяю в фонарях с питанием от одного элемента 18650 и управлением силовой кнопкой. При разработке ставились задачи: простота, малые габариты, богатая функциональность.

Драйвер имеет 4 режима – слабый, средний, мощный и мунлайт. Три основных режима вынесены в основную линию и переключаются коротким отключением питания, мунлайт скрыт. Переключение от слабого к мощному.

Драйвер без памяти в основной линейке, т.е. всегда стартует со слабого режима. Время сброса состояния перебора режимов

1 секунда. Из включенного состояния при коротком прерывании питания фонарь переходит на следующий режим.

Скрытый мунлайт активируется при 3 коротких (менее 0.25 сек) кликах из включенного состояния (или четырех из выключенного). Мунлайт запоминается, после выключения при следующем включении фонарь стартует именно в этом режиме. Для выход из режима осуществляется коротким кликом (точно так, как для переключения режима). Выходит всегда в слабый режим.

Существует возможность настройки яркости мунлайта, рампинг осуществляется при 11 коротких кликах. Фонарь начнет перебирать возможные варианты яркости, в нужный момент для сохранения текущей яркости следует сделать короткий клик (как при переключении режимов), длинный клик — отключение, будет загрузена настройка по умолчанию. Индикация фиксации новых настроек – 1 вспышка, загрузки настройки по умолчанию – 3 вспышки.

Система индивидуальных порогов обеспечивает ступенчатый переход на слабые режимы при разряде батареи. Полностью драйвер выключается при 2,75V.

Система индикации заряда батареи включается при 5 коротких кликах (шести из выключенного положения). Индикация осуществляется вспышками СИД от 1 до 6. Чем больше вспышек – тем больше заряд АКБ.

Присутствует двухуровневый термоконтроль (ТК). Режим калибровки ТК включается 13 прерываниями из включенного состояния. После этого фонарь после серии вспышек для индикации включения режима ТК перейдет с режим нагрева. Как только температура корпуса фонаря достигнет нужного значения, следует сделать короткий клик. Успешная запись нового значения осуществляется 1 вспышкой. Длинное отключение в режиме ТК сбрасывает настройку на значение по умолчанию, индикация – 3 вспышки.

Максимальный возможный ток при указанных на схеме номиналах 2.0А. Уменьшив сопротивление шунта можно поднять максимальный ток до 3-х ампер.

В драйвере имеются хорошо спрятанные стробы. 7 короткий прерываний и включенного состояния или 8 из выключенного включат быстрый строб, коротким прерыванием можно переключать быстрый-медленный-быстрый-медленный. Выход из этого режима — длительное нажатие кнопки.

Драйвер обеспечивает плавное включение и переключение всех основных режимов, что позволяет уменьшить нагрузку на контакты кнопки, т.к. ток достигает своего максимального значения после установления надежного соединения контактов кнопки.

Напряжение питания драйвера от 2.75В до 4.35В. В архиве прошивки для ATTiny45 и ATTiny85 (прошивка для 45-ой не тестировалась) и батник для прошивки. В батнике указаны фусы.

За стабилизацию тока отвечает программный ПИД регулятор. Для контроля температуры и напряжения питания используются встроенные в МК датчики. Частота работы понижающего преобразователя 250 килогерц. Транзистор CSD13202Q2 обладает довольно легким затвором, что позволяет управлять им напрямую с лапы МК. Заменить его с некоторым ухудшением параметров драйвера можно только на IRLHS6242. R3 — токовый датчик, при максимальном токе падение напряжения на нем 50mV. Все конденсаторы только керамика не ниже X5R.

Читайте также  Сильно греется батарея в телефоне

На фото собранный драйвер:

Все детали драйвера установлены с одной стороны. Диаметр драйвера 17мм, кроме того драйвер можно обточить до 15мм диаметра. Толщина текстолита 1,5мм, полная толщина драйвера – 3,5мм.

  • Цена: 142 руб. за пару
  • Перейти в магазин

Речь пойдёт о модернизации всем известного фонаря со множеством клонов по цене около 200 руб., который имеет три режима Max-Min-Strob.

В магазине у Саймона можно заказать фонари с разными прошивками режимов. Я, например, когда-то брал Convoy C8 с минимумом режимов Low-Mid-High. Но такое бывает редко, когда у покупателя есть выбор.

Поводом для покупки другого драйвера послужили надоедливые строб-режимы. Может кому-то они и нужны, а мне от дешёвого фонаря требуется только одно горит-не горит.

Можно конечно сделать один мощный режим, используя в нужном месте драйвера перемычку или резистор, но в этом случае не будет стабилизации тока светодиода.
Поэтому и был найден другой драйвер. На фото старый 3-х режимный справа, а новые слева.

Я переделал два фонаря. У одного блок с драйвером легко выкрутился пинцетом за пазы, у другого плоскогубцами через ткань, чтобы не поцарапать.

Новый драйвер имеет диаметр 15,6 мм, а посадочный размер 15,2 мм. Пришлось доработать алмазным надфилем. Подгонять надо аккуратно. «Таблетка» держится за счёт плотной посадки и упирается с обратной стороны только в аккумулятор, и если она будет болтаться, будут проблемы со сборкой и с контактом на корпус.

В качестве люксметра использовался Сёма и программа Light Meter v1.3, измерения однократные с расстояния вытянутой руки.

Фонарь с однорежимным драйвером 2 был испытан:
— с аккумулятором Ni-Mh PKCell/2200 мА-ч в течение часа, температура корпуса 43 град.
— с аккумулятором Li-Ion TrustFire 14500/900 мА-ч в течение 15 минут, далее испытания были прерваны из-за высокой температуры 54 град.

В этом же лоте есть драйвер диаметром 20 мм.
Спасибо за внимание.

Драйвер — ограничитель для светодиодного фонаря

В предыдущей самоделке «Аккумуляторный фонарь – настольная лампа» рассматривалось, в том числе, изменение светодиодной матрицы в приобретенном фонарике. Целью доработки было повышение надежности источника света, за счет изменения схемы подключения светодиодов, с параллельного включения на комбинированное.

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% сократит срок их службы в несколько раз.

Основной характеристикой светодиодов, которая определяют яркость их свечения, является не напряжение, а ток. Чтобы светодиоды гарантированно отработали заявленное количество часов, необходим драйвер, который стабилизирует протекающий через цепь светодиодов ток и длительно сохранит устойчивую яркость света.

Для маломощных светоизлучающих диодов, возможно их использование и без драйвера, но в этом случае его роль выполняют ограничительные резисторы. Такое подключение было использовано в приведенной выше самоделке. Это простое решение защищает светодиоды от превышения допустимого тока, в пределах расчетного источника питания, но стабилизация при этом отсутствует.

Читайте также  Программы для чтения файлов fb2 на компьютере

В этой статье, рассмотрим возможность усовершенствовать приведенную выше конструкцию и повысить эксплуатационные свойства фонаря с питанием от внешнего аккумулятора.

Для стабилизации тока через светодиоды, добавим в конструкцию фонаря простой линейный драйвер — стабилизатор тока с обратной связью. Здесь ток является ведущим параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах. Драйвер обеспечивает стабилизацию выходного тока при нестабильном входном напряжении или колебаниях напряжения в системе, причем подстройка тока происходит плавно, не создавая высокочастотных помех свойственных импульсным стабилизаторам. Схема такого драйвера крайне проста в изготовлении и настройке, но меньший КПД (около 80%) является за это платой.

Для исключения критического разряда источника питания (ниже 12 В), что особенно опасно для литиевых аккумуляторов, в схему дополнительно введем индикацию предельного разряда или отключение аккумулятора при низком напряжении.

1. Для решения указанных предложений изготовим следующую схему питания светодиодной матрицы.

Ток питания светодиодной матрицы проходит через регулирующий транзистор VT2 и ограничительное сопротивление R5. Ток через управляющий транзистор VT1 задается подбором сопротивления R4 и может изменяться в зависимости от изменения падения напряжения на резисторе R5, также используемом в качестве резистора токовой обратной связи. При увеличении тока в цепочке — светодиоды, VT2, R5, по какой-либо причине, увеличивается падение напряжения на R5. Соответствующее увеличение напряжения на базе транзистора VT1, приоткрывает его, уменьшая этим напряжение на базе VT2. А это прикрывает транзистор VT2, уменьшая и стабилизируя этим, ток через светодиоды. При уменьшении тока на светодиодах и VT2, процессы протекают в обратном порядке. Таким образом, за счет обратной связи, при изменении напряжения на источнике питания (с 17 до 12 вольт) или возможных изменениях параметров схемы (температура, выход из строя светодиода), ток через светодиоды постоянен в течение всего периода разряда аккумулятора.

На детекторе напряжения, специализированной микросхеме DA1, собрано устройство для контроля напряжения. Микросхема работает следующим образом. При номинальном напряжении, микросхема DA1 закрыта и находится в дежурном состоянии ожидания. При уменьшении напряжения на выводе 1, подключенном к контролируемой цепи (в данном случае — источник питания), до определенного значения, вывод 3 (внутри микросхемы) соединяется с выводом 2, подключенным к общему проводу.

Приведенная выше схема имеет различные варианты включения.

Вариант 1. Если к выводу 3 (точка А) подключить индикаторный светодиод (LED1 – R3) соединенный с положительным проводом (см. принципиальную схему), получим индикацию предельного разряда аккумулятора. При снижении напряжения питания до определенного значения (в нашем случае 12 В) светодиод LED1 включится, сигнализируя о необходимости заряда аккумулятора.

Вариант 2. Если точку А соединить с точкой Б, то при достижении низкого напряжения (12 В) на аккумуляторе, получим автоматическое отключение светодиодной матрицы от питания. Детектор напряжения, микросхема DA1, при достижении контрольного напряжения, соединит базу транзистора VT2 с общим проводом и закроет транзистор, отключив светодиодную матрицу. При повторном включении фонаря на низком напряжении (менее 12 В), светодиоды матрицы загораются на пару секунд (за счет заряд/разряд С1) и вновь гаснут, сигнализируя о разряде аккумулятора.

Читайте также  Преобразование шестнадцатеричного кода в текст

Вариант 3. При объединении вариантов 2 и 3, при отключении светодиодной матрицы включится индикаторный светодиод LED1.
Основные достоинства схем на детекторе напряжения, простота схемного подключения (практически не требуется дополнительных деталей обвязки) и чрезвычайно низкое энергопотребление (доли микроампера) в дежурном состоянии (в режиме ожидания).

2. Собираем схему драйвера на монтажной плате.
Выполняем монтаж VT1, VT2, R4. Подключаем, в качестве нагрузки, светодиодную матрицу, рассмотренную в начале статьи. В цепь питания светодиодов включаем миллиамперметр. С целью возможности проверки и настройки схемы на стабильном и определенной величины напряжении, подключаем ее к регулируемому источнику питания. Подбираем сопротивление резистора R5, позволяющее стабилизировать ток через светодиоды во всем диапазоне планируемой регулировки (с 12 до 17 В). С целью повышения КПД, первоначально был установлен резистор R5 номиналом 3,9 ома (см. фото), но стабилизация тока во всем диапазоне (при фактически установленных деталях) потребовала установки номинала в 20 ом, так как не хватало напряжения для регулировки VT1 из-за малого тока потребления светодиодной матрицы.

Транзистор VT1 желательно подобрать с большим коэффициентом передачи тока базы. Транзистор VT2 должен обеспечить допустимый ток коллектора, превышающий ток светодиодной матрицы и рабочее напряжение.

3. Добавляем на монтажную плату схему индикатора — ограничителя предельного разряда. Микросхемы детектора напряжения выпускаются на различные значения контроля напряжения. В нашем случае, в связи с отсутствием микросхемы на 12 В, использовал имеющуюся в наличии, на 4,5 В (часто встречаются в отработавшей бытовой технике – телевизоры, видеомагнитофоны). По этой причине, для контроля напряжения в 12 В, добавляем в схему делитель напряжения на постоянном резисторе R1 и переменном R2, необходимом для точной настройки на нужное значение. В нашем случае, регулировкой R2, добиваемся напряжения 4,5 В на выводе 1 DA1 при напряжении 12,1…12,3 В на шине питания. Аналогично, при подборе делителя напряжения, можно использовать и другие подобные микросхемы — детекторы напряжения, различных фирм, наименований и контрольных напряжений.

Первоначально проверяем и настраиваем схему на срабатывание, по светодиодному индикатору. Затем проверяем работу схемы, соединив точки А и Б, на отключение светодиодной матрицы. Останавливаемся на выбранном варианте (1, 2, 3).

4. Готовим заготовку для рабочей платы, вырезав нужный размер из типовой универсальной платы.

5. Выполняем распайку отлаженной схемы на рабочую плату.

6. Подключаем светодиодную матрицу к рабочей плате и проверяем работу драйвера – ограничителя в сборе, во всем диапазоне планируемой регулировки (с 12 до 17 В), подключив драйвер к регулируемому источнику питания. При положительных результатах, проверяем работу драйвера подключенного к аккумулятору и в составе аккумуляторного фонаря. Дополнительной наладки обычно не требуется.

Ссылка на основную публикацию
Adblock
detector