Почему воздух не улетает в космос

Для того чтобы дать ответ на вопрос о том, почему в космосе нет воздуха, нужно для начала определить, что такое воздух. Итак, воздух — это не что иное, как молекулы и частицы, плавающие в пространстве. Подробности в статье.

Земля и ее атмосфера

Если говорить о нашей планете Земля, то существует большое количество молекул, атомов, частиц, которые составляют нашу атмосферу. В воздухе по объему имеется около 78,09 % азота, 20,95 % кислорода, 0,04 % диоксида углерода и т. д. На основании плотности молекул на разных уровнях ученые делят атмосферу на пять основных слоев:

  1. Тропосфера: от 0 до 12 км над уровнем моря.
  2. Стратосфера: от 12 до 50 км.
  3. Мезосфера: от 50 до 80 км.
  4. Термосфера: от 80 до 700 км.
  5. Экзосфера: от 700 до 10 000 км.

Эти слои существуют, потому что гравитация Земли притягивает к себе все молекулы. Собственно, этот факт и объясняет, почему воздух не улетает в космос вместе с атмосферой. Плотность молекул тропосферы высока, потому что это слой, который находится ближе всего к поверхности Земли, а значит, влияние силы тяжести на молекулы очень велико. Однако если мы будем подниматься все выше и выше и таким образом отдаляться от поверхности Земли, эффект гравитации уменьшится со временем, а вместе с этим снизится и плотность воздуха. Поэтому слой экзосферы имеет, по сравнению со слоем тропосферы, крайне низкий процент содержания молекул.

Теперь перейдем непосредственно к вопросу о том, почему в космосе нет воздуха. Собственно, с точки зрения физики и астрономии этот вопрос не на 100 % корректно сформулирован. Дело в том, что воздух присутствует даже в космосе. Единственное замечание — такой воздух не подходит ни для каких живых существ. Также стоит уточнить, что когда мы думаем над вопросом о том, почему в космосе нет воздуха, имеем ли мы в виду под словом «космос» непосредственно пустое пространство или атмосферу других планет?

Действительно ли в космосе нет воздуха?

Так, если мы говорим об атмосфере других планет, то стоит отметить, что каждая планета имеет свою собственную гравитацию. Эта гравитация также зависит от массы планеты, потому что это не что иное, как сила, влияющая на степень искривления пространства-времени. Чем больше масса тела (планеты или звезды), тем выше степень искривления. Это также значит, что чем больше масса тела, тем сильнее гравитация. На других планетах соотношение плотности молекул в различных слоях атмосферы и силы гравитации идентично природе отношений гравитации и атмосферы на планете Земля.

Итак, плотность молекул воздуха будет более высокой у поверхности планеты, а уменьшаться показатель плотности будет при движении вверх. Однако для существования живых организмов на этой планете состав молекул воздуха должен быть сбалансированным, подобно тому, что на Земле.

Но если говорить о пустом пространстве космоса, которое мы называем вакуумом, то следует также сказать, что на самом деле это совсем не вакуум. Потому что даже пустое пространство — это что-то. В нем также имеются молекулы водорода и некоторые другие частицы. Но плотность этих молекул и частиц крайне ничтожна, потому что на них не оказывает сильного влияния гравитационное поле какого-нибудь небесного объекта.

По этой причине мы говорим, что в космосе нет воздуха. Но на самом деле это неправда. В космическом пространстве все же существуют некоторые частицы.

Объяснение для детей: почему в космосе нет воздуха

Представьте себе большую пустую комнату (например, размером с город). Теперь вообразите, что вы оставили в ней муравья. Вероятность того, что вам удастся его найти, равна 1/1000000000. Вселенная — такая же комната, а поскольку газ имеет тенденцию занимать все свободное пространство, молекулы его отдаляются далеко друг от друга — их плотность крайне мала.

Читайте также  Ребутнуть что это значит

Это словно капля чернил в океане — ее не видно, она ни на что не влияет. Стоит отметить, что на самом деле из атмосферы Земли все-таки выходит определенный процент воздуха, который, попадая во вселенную, не оказывает никакого значительного эффекта на космическое пространство.

В целом космос — это настолько загадочно, что ученые до сих пор не выяснили, какими свойствами он обладает. Физики уверены, что в космическом пространстве даже существуют некоторые частицы, о которых мы еще не знаем. Итак, поскольку воздух состоит из частиц, молекул и т. д., будет неправильно, если мы скажем, что в космосе нет воздуха. Вместо этого мы должны спросить себя о том, какие частицы есть в космосе.

На этот вопрос уже есть ответ здесь:

Почему космос вакуум? Кроме того, почему воздух из Земли не выходит из-за вакуума в космосе? Озоновый слой — это только газ и магнитное поле, так почему же воздух не улетает с Земли в космос?

Ответы

Сила тяжести.

Вы можете думать о планетах, таких как колодцы или глубокие дыры в земле (гравитационные колодцы). Более плотные предметы падают на дно (камни), поверх них (вода) лежат менее плотные, еще менее плотные — воздух (и воздух) и, наконец, наименее плотные предметы (вакуум).

Воздух, по большей части, не покидает планету по той же причине, по которой вода не летит из океана, а гравитация удерживает его.

Важно помнить, что пространство не сосет. Это не такой вакуум. Нет силы, вытягивающей вещи в космос так же, как нет силы, вытягивающей воздух из отверстия в воздушном шаре.

Типичная скорость молекулы воздуха составляет несколько сотен метров в секунду, а скорость выхода с Земли — более 10000 метров в секунду. Таким образом, почти все молекулы воздуха просто падают вниз. На них влияет гравитация, как и на все остальное!

Однако мы теряем некоторые молекулы воздуха. В частности, водород и гелий легче, поэтому они движутся быстрее и уходят значительно чаще. Вот почему в нашей атмосфере их очень мало. Но у Юпитера, который имеет гораздо более сильную гравитацию, есть атмосфера, в основном из водорода и гелия.

Воздух не может выйти в космос по той же причине, по которой вы не смогли: гравитация. Как отмечается в ответе Кевина, иногда некоторые идут достаточно быстро, чтобы сбежать. Вы бы тоже, если достаточно вещей ударил вас достаточно сильно. 🙂

Пространство — это вакуум (для некоторого определения вакуума), потому что вакуум — это просто отсутствие давления воздуха / газа, и не хватает молекул газа в космосе, чтобы создать заметное давление.

Тем не менее, обратите внимание, что есть частицы в космосе; они двигаются, и они оказывают давление на вещи, которые они ударили. См. Например, солнечный ветер и гелиопауза . Таким образом, в зависимости от того, что / где вы измеряете, пространство далеко от вакуума.

Чтобы дать простой ответ:

Пространство — это (почти) вакуум, поскольку воздуха там просто не хватает.

Куда ушел весь этот воздух? Из-за силы тяжести воздух притягивается к крупным объектам, таким как планеты, и именно эта гравитация также удерживает воздух рядом с объектом, предотвращая его «возврат в космос».

Рис.1 Распределение солнечной энергии

А – Энергия, излучаемая сушей и морями 47%, В – Отражение от облаков 30%, С – Энергия, запасенная в облаках 22%, D – Энергия фотосинтеза 1%.

Грозит ли Земле потеря атмосферы, как это произошло с Меркурием и Марсом? Земля по факту уже потеряла легкие газы, такие как водород и гелий. В то же время, планета прочно удерживает тяжелые газы азот, кислород, аргон и углекислый газ. Атмосфера «привязана» к поверхности земли за счет «эффекта Броуна» [1]. Но с таким же эффектом на атмосферу воздействует и Солнце.

Читайте также  Смайлики с помощью клавиатуры alt

Вот здесь следует отметить одну особенность материального мира. Все атомы этого мира поглощают и излучают энергию на определенных частотах. Резонансная частота приемников энергии, в том числе и атомов атмосферы, находится по частотной шкале ниже частоты солнечного света (10 14 Гц). Это подтверждено экспериментами при спектрофотометрическом анализе газа. Молекулы газа в резонансе поглощают свет ближе к красному и инфракрасному излучению.

Если бы не существовало такой избирательности по шкале частот, то ни одна планета не смогла бы удержать атмосферу, т.к. энергия солнечного излучения гораздо выше, чем планетарная. В то же время, какая-то часть молекул реагирует на солнечную радиацию и за счет коллективного действия служит преградой этому излучению.

Интенсивность света при прохождении через атмосферу уменьшается, энергия фотонов тратится на возбуждение атомов в молекулах воздуха. Вынужденные колебания атомов и поглощение света особенно интенсивны при резонансе. Опытным путем было установлено, что интенсивность света при прохождении через вещество убывает по экспоненциальному закону Бугера:

I — интенсивность света на входе,

l – толщина слоя вещества,

k – постоянная, зависящая от свойств поглощающего вещества (коэффициент поглощения) [2].

Если бы не было рассеяния солнечной радиации, особенно высокочастотной, то живая жизнь на Земле не появилась бы вообще.

Отметим еще один факт, коротковолновый солнечный спектр в атмосфере рассеивается сильнее, чем длинноволновый. Именно по этой причине мы наблюдаем небо синим, т.к. синий цвет находится на коротковолновом конце шкалы излучений. Во время заката или на рассвете небо окрашивается в красные тона. В это время свет пробивается по касательной и его путь в атмосфере гораздо длиннее, в результате чего, значительная часть синего и зелёного цветов рассеивается сильнее.

Атмосфера служит защитой от высокочастотной радиации за счет своей массы, количества молекул, стоящих на ее пути. Как известно, особенно хорошо справляются молекулы озонового слоя с ультрафиолетом, которого в солнечном потоке огромное количество. На мой взгляд, молекулы озона резонируют с ультрафиолетовым излучением на так называемой частоте биения. Благодаря резонансу на такой высокой частоте молекулы озона снижают частоту излучения до световой и даже красной, превращая энергию излучения в теплоту. На это указывают измерения температуры в тропосфере и мезосфере. Температурный градиент начинает расти с 25 км и поднимается от -50 0 С до положительных величин температуры на высоте 50 км от поверхности земли.

Отражение атмосферы

На рис. 1 представлена энергетическая диаграмма перераспределения солнечной энергии [3]. Из диаграммы видно, что почти половина солнечной энергии не доходит до поверхности Земли, 30% сразу отражается атмосферой и облаками, а 22% запасают облака. Около 47% аккумулирует поверхность земли, около процента уходит на фотосинтез. Атмосфера состоит из молекул газа. В отдельности каждая молекула далеко не похожа на зеркало, и даже весь газ, собранный в атмосфере, это тоже не полупрозрачное зеркало. Тогда как понимать отражение такого количества энергии обратно в Космос?

Облака, понятно, более плотная субстанция и они отражают определенное количество энергии, но как, казалось бы, прозрачная атмосфера проделывает такие фокусы?

Строго говоря, прямого отражения в атмосфере не происходит. Рассмотрим взаимодействие одного фотона с одной молекулой атмосферы. При попадании, даже можно сказать так – при прохождении фотона через молекулу, она забирает часть энергии фотона и частота последнего снижается. При попадании во вторую молекулу, этот энергетически «ослабленный» фотон может быть поглощен полностью. После такого взаимодействия с молекулой, та, в свою очередь, отстреливает свой красный спутник – крафон. Происходит своеобразная трансформация – молекулярное рассеяние света. Вот таким образом, через поглощение происходит отражение солнечных лучей.

Читайте также  Почему нет звука в игре на ps3

С другой стороны в атмосфере постоянно витают взвешенные частицы. Большая концентрация таких частиц может создать оптическую неоднородность (мутную среду). К таким средам относятся дымы, туманы, выбросы вулканов. Свет, проходя через данные среды, поглощается и рассеивается наиболее интенсивно. В частицах происходит многократное переизлучение энергии фотона от одного атома к другому с выделением теплоты.

Оставшаяся часть процессов отражения идет через посредника, т.е. через поверхность земли. Земля, в виду плотности своей материи, выступает в роли частотного понижающего трансформатора – она понижает частоту солнечного излучения до приемлемой частоты приемника (газа). Планета получает видимый свет, а в атмосферу направляет электромагнитные волны на частоте инфракрасного диапазона (крафоны). Преградой для крафонов становится не только углекислый газ (СО2), при котором возникает, так называемый «парниковый эффект», но и вся атмосфера. Учитывая разреженность атмосферы, поэтому она не может удержать все крафоны земли, которые безвозвратно покидают Землю. За счет этого явления происходит гравитационное притяжение приемника к источнику, т.е. к Солнцу. За счет этого излучения происходит одновременно охлаждение Земли.

Кроме того, с поднятием на высоту разрежение в атмосфере возрастает более быстро. Поэтому, хотя горы и ближе к Солнцу, на них холоднее, чем на равнинах, в среднем при подъёме на каждый километр температура понижается на 6° C из-за адиабатического расширения воздуха.

Почему атмосфера земли состоит преимущественно из «тяжелых» газов (азота, кислорода, паров воды, углекислого газа) и содержит лишь следы «легких» газов (водорода и гелия)?

Молекулы различных газов при одной и той же температуре имеют различные скорости, зависящие от молекулярных масс газов. В любой смеси каждый отдельный газ будет характеризоваться определенной средней скоростью его молекул. При одинаковой кинетической энергии средняя скорость молекул разных газов будет различной. Например, средняя скорость молекул водорода в четыре раза выше, чем средняя скорость молекул кислорода.

Скорость молекул и плотность атмосферы меняется от перехода дня к ночи и наоборот.

С помощью орбитальных спутников было установлено, что внешний слой атмосферы в дневное время расширяется из-за нагрева солнечными лучами и постепенно сжимается в течение ночи из-за более низких температур. Данный факт есть неопровержимое свидетельство того, что броуновское, хаотичное движение молекул воздуха связано только с энергией Солнца и Земли (эффект Броуна), а не с первичным накопленным движением на основе упругого столкновения молекул, как объясняет молекулярно-кинетическая теория. В атмосфере нет, да и вообще в природе, абсолютно-упругих столкновений не существует.

Планета Земля за 4,6 млрд. лет сформировалась в строгом соответствии с законами гравитации. Ее гравитация не достаточна, чтобы удержать водород и гелий, как гиганты Юпитер и Сатурн, но не настолько, чтобы упустить в межзвездное пространство азот, кислород и другие газы.

Есть высказывания, что планета теряет часть своей атмосферы из-за ее вращения вокруг своей оси. В таких гипотезах есть явное противоречие. Если бы это было так, то за счет центробежной силы, в первую очередь, планета должна терять тяжелые молекулы газов, т.е. те которые сейчас составляют атмосферу. На самом деле картина противоположная, улетают легкие газы – водород и гелий. А это говорит о том, что центробежные силы вращения здесь совершенно непричем. Легкие газы улетучиваются по причине высоких скоростей их молекул, энергии, получаемой от фотонов Солнца и крафонов Земли.

Атмосфера и Космос, атмосфера и Земля – два вектора по которым идет сегрегация, седиментация газовых молекул. Преобладающей силой в данном процессе является не центробежная, а гравитационная.

Ссылка на основную публикацию
Adblock
detector