При каком значении параметра векторы компланарны

рис. 1

Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.

Условия компланарности векторов

Примеры задач на компланарность векторов

Решение: найдем смешанное произведение векторов

=
1 1 1
1 2 1

= 1·1·1 + 1·1·2 + 1·2·3 — 1·1·3 — 1·1·2 — 1·1·2 = 1 + 2 + 6 — 3 — 2 — 2 = 2

Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.

Решение: найдем смешанное произведение векторов

=
1 3 1
2 2 2

= 1·2·3 + 1·1·2 + 1·1·2 — 1·2·3 — 1·1·2 — 1·1·2 = 6 + 2 + 2 — 6 — 2 — 2 = 0

Ответ: вектора компланарны так, как их смешанное произведение равно нулю.

Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования

1 1 1
1 2 -1 1 3 3 3

из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3

1 1 1 1 1 1 1 — 1 2 — 1 0 — 1 1 -1 -1 1 -1 1 3 — 3 3 — 3 3 — 3

к 3-тей строке добавим 2-рую

1 1 1

1 1 1 1 -1 1 -1 0 + 0 -1 + 1 1 + (-1) 3 — 3 3 — 3 3 — 3

Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.

Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.

В данной статье мы рассмотрим такие темы, как:

  • определение компланарных векторов;
  • условия компланарности векторов;
  • примеры задач на компланарность векторов.

Определение компланарных векторов

Компланарные векторы — это векторы, которые параллельны одной плоскости или лежат на одной плоскости.

Два любых вектора всегда компланарны, поскольку всегда можно найти плоскости параллельные 2-м произвольным векторам.

Условия компланарности векторов

  • Для 3-х векторов выполняется условие: если смешанное произведение 3-х векторов равно нулю, то эти три вектора компланарны.
  • Для 3-х векторов выполняется условие: если три вектора линейно зависимы, то они компланарны.
  • Для n-векторов выполняется условие: если среди векторов не более 2-х линейно независимых векторов, то они компланарны.

Примеры решения задач на компланарность векторов

Исследуем на компланарность векторы

a ¯ = ( 1 ; 2 ; 3 ) , b = ( 1 ; 1 ; 1 ) и c ¯ = ( 1 ; 2 ; 1 )

Как решить?

Векторы будут являться компланарными, если их смешанное произведение равно нулю, поэтому вычисляем смешанное произведение заданных векторов. Для этого составляем определитель, по строкам которого записываются координаты векторов-сомножителей:

( a ¯ , b ¯ , c ¯ ) = 1 2 3 1 1 1 1 2 1 = = 1 × 1 × 1 + 1 × 2 × 3 + 2 × 1 × 1 — 1 × 1 × 3 — 2 × 1 × 1 — 1 × 2 × 1 = 2 ≠ 0

Отсюда следует, что смешанное произведение не равняется нулю, поэтому векторы не являются компланарными.

Ответ: векторы не являются компланарными.

Докажем, что три вектора

a ¯ = ( 1 ; — 1 ; 2 ) , b = ( 0 ; 1 ; — 1 ) и c ¯ = ( 2 ; — 2 ; 4 ) компланарны.

Как решить?

Находим смешанное произведение данных векторов:

( a ¯ , b ¯ , c ¯ ) = 1 — 1 2 0 1 — 1 2 — 2 4 = = 1 × 1 × 4 + 0 × ( — 2 ) × 2 + ( — 1 ) × ( — 1 ) × × 2 — 2 × 1 × 2 — ( — 2 ) × ( — 1 ) × 1 — 0 × ( — 1 )

Из данного примера видно, что смешанное произведение равняется нулю.

Ответ: векторы являются компланарными.

Проверим, компланарны ли векторы

Как решить?

Необходимо найти количество линейно независимых векторов: записываем значения векторов в матрицу и выполняем элементарные преобразования:

1 1 1 1 2 0 0 — 1 1 3 3 3

Из 2-ой строки вычитаем 1-ю, из 4-ой вычитаем 1-ю, умноженную на 3:

1 1 1 1 — 1 2 — 1 0 — 1 0 — 1 1 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 — 1 1 0 0 0

К 3-ей строке прибавляем 2-ю:

1 1 1 0 1 — 1 0 + 0 — 1 + 1 1 + ( — 1 ) 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 0 0 0 0 0

Поскольку в матрице только две ненулевые строки, делаем вывод, что среди них всего два линейно независимых вектора.

Ответ: векторы являются компланарными, поскольку среди них всего два линейно независимых вектора.

α = (–2; 6; –5), β = (5; 6; 3), с = (–6; –8; α).

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

12.10.2018

Что ты хочешь узнать?

Ответ

Условие компланарности α, β и с:

распишем покоординатно,
учитывая, что
α = (–2; 6; –5), β = (5; 6; 3), с = (–6; –8; Е).

из первых двух уравнений следует
система:

Читайте также  Программа для philips xenium x5500
Ссылка на основную публикацию
Adblock
detector