Примеры нахождения определителя матрицы

Пример вычисления определителя (детерминанта) матрицы

Определитель матрицы — является многочленом от элементов квадратной матрицы (если элементы матрицы это числа, тогда определитель матрицы тоже будет числом).

Для нахождения определителя матрицы, исходная матрица должна быть квадратной.

Дана матрица размером 2х2;

Что бы вычислить определитель матрицы 2х2 нужно из произведения элементов главной диагонали, вычесть произведение элементов побочной диагонали;

Дана матрица размером 3х3;

Что бы вычислить определитель матрицы 3х3 нужно воспользоваться формулой;

Подставляем наши значения в формулу;

Дана матрица размером 4х4;

Есть два способа вычисления определителя матрицы:

По определению — через разложение по строке или столбцу;

По методу Гаусса — приведение матрицы к треугольному виду (этот способ лучше использовать для решения матриц, размером 4х4 и более).

Решим пример первым способом (по определению — через разложение по строке или столбцу)

Чтобы вычислить определитель матрицы, нужно воспользоваться следующей формулой, в ней рассмотрен пример разложения матрицы по первой строке;

Выбираем строку или столбец (любую), лучше всего выбирать строку или столбец, где больше нулей, для удобства вычисления; В данном случае мы выбираем третью строку, так как в ней присутствует ноль;

Берём первый элемент этой строки (2); Теперь вычёркиваем третью строку и первый столбец;

Получаем матрицу 3х3;

Согласно формуле, мы умножаем выбранный нами элемент на определитель получившейся матрицы;

Вычисление определителя матрицы 3х3, мы рассматривали в примере №2

Далее делаем всё тоже самое, что и в шаге два, только берём второй элемент данной строки (0) и вычёркиваем третью строку и второй столбец;

Так как этот элемент равен нулю, то ни чего не нужно считать и так всё ясно;

Теперь берём третий элемент строки (6) и вычёркиваем третью строку и третий столбец;

Получаем матрицу 3х3;

Вычисляем определитель этой матрицы и умножаем на выбранный нами элемент (6)

Берём четвёртый элемент строки (-3) и вычёркиваем третью строку и четвёртый столбец;

Получаем матрицу 3х3;

Вычисляем определитель этой матрицы и умножаем на выбранный нами элемент (-3)

Чтобы вычислить определитель исходной матрицы, нужно сложить полученные результаты;

Опишем решение примера вторым способом (по методу Гаусса — приведение матрицы к треугольному виду)

Суть способа заключается в том, чтобы перед вычислением определителя, привести матрицу к треугольному виду. Если в ходе приведения матрицы к треугольному виду вы умножаете (делите) строку на число, то на это же число нужно будет умножить (разделить) полученный в конце определитель;

Пример приведения матрицы к треугольному виду мы уже рассматривали здесь

Итак, мы привили матрицу к треугольному виду;

Теперь чтобы вычислить определитель приведённой матрицы, нужно перемножить все элементы, стоящие на главной диагонали;

Читайте также  Самый быстрый средний танк

В общем случае правило вычисления определителей $n$-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали:

Задание. Вычислить определитель второго порядка $left| egin <11>& <-2>\ <7>& <5>end
ight|$

Решение. $left| egin <11>& <-2>\ <7>& <5>end
ight|=11 cdot 5-(-2) cdot 7=55+14=69$

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "плюс"; аналогично, для второго определителя — соответствующие произведения берутся со знаком "минус", т.е.

Задание. Вычислить определитель $left| egin <3>& <3>& <-1>\ <4>& <1>& <3>\ <1>& <-2>& <-2>end
ight|$ методом треугольников.

Решение. $left| egin <3>& <3>& <-1>\ <4>& <1>& <3>\ <1>& <-2>& <-2>end
ight|=3 cdot 1 cdot(-2)+4 cdot(-2) cdot(-1)+$

$$+3 cdot 3 cdot 1-(-1) cdot 1 cdot 1-3 cdot(-2) cdot 3-4 cdot 3 cdot(-2)=54$$

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":

Задание. Вычислить определитель $left| egin <3>& <3>& <-1>\ <4>& <1>& <3>\ <1>& <-2>& <-2>end
ight|$ с помощью правила Саррюса.

Решение.

$$+(-1) cdot 4 cdot(-2)-(-1) cdot 1 cdot 1-3 cdot 3 cdot(-2)-3 cdot 4 cdot(-2)=54$$

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Задание. Разложив по первой строке, вычислить определитель $left| egin <1>& <2>& <3>\ <4>& <5>& <6>\ <7>& <8>& <9>end
ight|$

Решение. $left| egin <1>& <2>& <3>\ <4>& <5>& <6>\ <7>& <8>& <9>end
ight| leftarrow=a_ <11>cdot A_<11>+a_ <12>cdot A_<12>+a_ <13>cdot A_<13>=$

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Задание. Вычислить определитель $left| egin <1>& <2>& <3>\ <4>& <5>& <6>\ <7>& <8>& <9>end
ight|$

Решение. Выполним следующие преобразования над строками определителя: из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Задание. Вычислить определитель $left| egin <9>& <8>& <7>& <6>\ <5>& <4>& <3>& <2>\ <1>& <0>& <1>& <2>\ <3>& <4>& <5>& <6>end
ight|$ , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй — пять третьих и от четвертой — три третьих строки, получаем:

Читайте также  Расширение c7483456 a289 439d 8115 601632d005a0

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:

$$=4 cdot(2 cdot 8-4 cdot 4)=0$$

Замечание

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Задание. Вычислить определитель $Delta=left| egin <-2>& <1>& <3>& <2>\ <3>& <0>& <-1>& <2>\ <-5>& <2>& <3>& <0>\ <4>& <-1>& <2>& <-3>end
ight|$ приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент $a_<11>$ будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Далее получим нули в первом столбце, кроме элемента $a_<11>$ , для этого из третьей строки вычтем две первых, а к четвертой строке прибавим первую, будем иметь:

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен $pm 1$ , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

Далее делаем нули во втором столбце под главной диагональю, для этого поступаем следующим образом: к третьей строке прибавляем три вторых, а к четвертой — две вторых строки, получаем:

Далее из третьей строки выносим (-10) за определитель и делаем нули в третьем столбце под главной диагональю, а для этого к последней строке прибавляем третью:

Ответ. $Delta=-80$

Теорема Лапласа

Пусть $Delta$ — определитель $n$-го порядка. Выберем в нем произвольные $k$ строк (или столбцов), причем $k leq n-1$ . Тогда сумма произведений всех миноров $k$-го порядка, которые содержатся в выбранных $k$ строках (столбцах), на их алгебраические дополнения равна определителю.

Задание. Используя теорему Лапласа, вычислить определитель $left| egin <2>& <3>& <0>& <4>& <5>\ <0>& <1>& <0>& <-1>& <2>\ <3>& <2>& <1>& <0>& <1>\ <0>& <4>& <0>& <-5>& <0>\ <1>& <1>& <2>& <-2>& <1>end
ight|$

Решение. Выберем в данном определителе пятого порядка две строки — вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):

Определитель (детерминант) матрицы — некоторое число, с которым можно сопоставить любую квадратную матрицу А = ( a i j ) n × n .

|А|, ∆ , det A — символы, которыми обозначают определитель матрицы.

Читайте также  Почему зависает гта сан андреас

Способ вычисления определителя выбирают в зависимости от порядка матрицы.

Определитель матрицы 2-го порядка вычисляют по формуле:

d e t A = 1 — 2 3 1 = 1 × 1 — 3 × ( — 2 ) = 1 + 6 = 7

Определитель матрицы 3-го порядка: правило треугольника

Чтобы найти определитель матрицы 3-го порядка, необходимо одно из правил:

  • правило треугольника;
  • правило Саррюса.

Как найти определитель матрицы 3-го порядка по методу треугольника?

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 1 5 — 1

d e t A = 1 3 4 0 2 1 1 5 — 1 = 1 × 2 × ( — 2 ) + 1 × 3 × 1 + 4 × 0 × 5 — 1 × 2 × 4 — 0 × 3 × ( — 1 ) — 5 × 1 × 1 = ( — 2 ) + 3 + 0 — 8 — 0 — 5 = — 12

Правило Саррюса

Чтобы вычислить определитель по методу Саррюса, необходимо учесть некоторые условия и выполнить следующие действия:

  • дописать слева от определителя два первых столбца;
  • перемножить элементы, которые расположены на главной диагонали и параллельных ей диагоналях, взяв произведения со знаком «+»;
  • перемножить элементы, которые расположены на побочных диагоналях и параллельных им, взяв произведения со знаком «—».

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 — 2 5 — 1 1 3 0 2 — 2 5 = 1 × 2 × ( — 1 ) + 3 × 1 × ( — 2 ) + 4 × 0 × 5 — 4 × 2 × ( — 2 ) — 1 × 1 × 5 — 3 × 0 × ( — 1 ) = — 2 — 6 + 0 + 16 — 5 — 0 = 3

Методы разложения по элементам строки и столбца

Чтобы вычислить определитель матрицу 4-го порядка, можно воспользоваться одним из 2-х способов:

  • разложением по элементам строки;
  • разложением по элементам столбца.

Представленные способы определяют вычисление определителя n как вычисление определителя порядка n-1 за счет представления определителя суммой произведений элементов строки (столбца) на их алгебраические дополнения.

Разложение матрицы по элементам строки:

d e t A = a i 1 × A i 1 + a i 2 × A i 2 + . . . + а i n × А i n

Разложение матрицы по элементам столбца:

d e t A = а 1 i × А 1 i + а 2 i × А 2 i + . . . + а n i × А n i

Если раскладывать матрицу по элементам строки (столбца), необходимо выбирать строку (столбец), в которой(-ом) есть нули.

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0

  • раскладываем по 2-ой строке:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 2 × ( — 1 ) 3 × 1 — 1 3 — 2 5 1 3 1 0 = — 2 × 1 — 1 3 4 5 1 2 1 0 + 1 × 0 — 1 3 — 2 5 1 3 1 0

  • раскладываем по 4-му столбцу:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 3 × ( — 1 ) 5 × 2 1 0 — 2 4 5 3 2 1 + 1 × ( — 1 ) 7 × 0 1 — 1 2 1 0 3 2 1 = — 3 × 2 1 0 — 2 4 5 3 2 1 — 1 × 0 1 — 1 2 1 0 3 2 1

Свойства определителя

  • если преобразовывать столбцы или строки незначительными действиями, то это не влияет на значение определителя;
  • если поменять местами строки и столбцы, то знак поменяется на противоположный;
  • определитель треугольной матрицы представляет собой произведение элементов, которые расположены на главной диагонали.

Пример 6

А = 1 3 4 0 2 1 0 0 5

d e t А = 1 3 4 0 2 1 0 0 5 = 1 × 5 × 2 = 10

Определитель матрицы, который содержит нулевой столбец, равняется нулю.

Ссылка на основную публикацию
Adblock
detector