Разлагая подынтегральную функцию в ряд вычислить интеграл

Степенные ряды, которые мы и станем использовать, сходятся равномерно, поэтому их можно почленно интегрировать по любому отрезку, лежащему внутри интервала сходимости. Схема решения подобных задач на вычисление интегралов с помощью рядов проста:

  1. Разложить подынтегральную функцию в функциональный ряд (обычно в ряд Маклорена).
  2. Произвести почленное интегрирование членов записанного в первом пункте функционального ряда.
  3. Вычислить сумму полученного во втором пункте числового ряда с заданной точностью $varepsilon$.

Задачи на вычисление интегралов с помощью рядов популярны у составителей типовых расчётов по высшей математике. Поэтому в данной теме мы разберём пять примеров, в каждом из которых требуется вычислить определенный интеграл с точностью $varepsilon$.

Вычислить $intlimits_<0>^<frac<1><2>>e^<-x^2>dx$ с точностью до $varepsilon=10^<-3>$.

Сразу отметим, что интеграл $int e^<-x^2>dx$ не берётся, т.е. первообразная подынтегральной функции не выражается через конечную комбинацию элементарных функций. Иными словами, стандартными способами (подстановка, интегрирование по частям и т.д.) первообразную функции $e^<-x^2>$ найти не удастся.

Для таких задач есть два варианта оформления, поэтому рассмотрим их отдельно. Условно их можно назвать "развёрнутый" и "сокращённый" варианты.

Развёрнутый вариант оформления

Запишем разложение функции $e^x$ в ряд Маклорена:

Данное разложение верно при всех $xin$. Подставим $-x^2$ вместо $x$:

Интегрируем полученное разложение на отрезке $left[0;frac<1><2>
ight]$:

Получили сходящийся знакочередующийся ряд. Это значит, что если для вычисления приближенного значения заданного интеграла взять $k$ членов полученного ряда, то погрешность не превысит модуля $(k+1)$-го члена ряда.

Согласно условию, точность $varepsilon=10^<-3>$. Так как $frac<1><42cdot<2^7>>=frac<1> <5376>of your page —>

Сумма ряда

Чтобы посчитать сумму ряда онлайн выполните следующие действия:

  • ввести выражение, для которого нужно вычислить ряд
  • указать параметр, по которому будет считать сумма
  • указать значение параметра, до которого нужно подсчитать (для бесконечного ряда указываем бесконечность)
Читайте также  Самая дешевая веб камера

Разложение в ряд Тейлора (степенной ряд)

Это он-лайн сервис в три шага:

  • Ввести функцию, которую необходимо разложить
  • Ввести точку, в окрестности которой необходимо разложить
  • Указать до какого члена раскладывать

Разложение в ряд Фурье

Это он-лайн сервис в два шага:

  • Ввести функцию, которую необходимо разложить
  • Ввести отрезок, на котором необходимо разложить

Произведение ряда

Чтобы посчитать произведение ряда онлайн выполните следующие действия:

  • ввести выражение, для которого нужно вычислить произведение ряда
  • указать параметр, по которому считать произведение
  • указать значение параметра, до которого нужно подсчитать (для бесконечного ряда указываем бесконечность oo)

© Контрольная работа РУ — калькуляторы онлайн

Кроме вышеперечисленных способов, можно вычислить значение определенного интеграла с помощью разложения подынтегральной функции в степенной ряд.

Принцип этого метода состоит в том, чтобы заменить подынтегральную функцию по формуле Тейлора и почленно проинтегрировать полученную сумму.

Пример. С точностью до 0,001 вычислить интеграл

Т.к. интегрирование производится в окрестности точки х=0, то можно воспользоваться для разложения подынтегральной функции формулой Маклорена.

Разложение функции cos x имеет вид:

Зная разложение функции cos х легко найти функцию 1 – cos x:

В этой формуле суммирование производится по п от 1 до бесконечности, а в предыдущей – от 0 до бесконечности. Это – не ошибка, так получается в результате преобразования.

Теперь представим в виде ряда подынтегральное выражение.

Теперь представим наш интеграл в виде:

В следующем действии будет применена теорема о почленном интегрировании ряда. (Т.е. интеграл от суммы будет представлен в виде суммы интегралов членов ряда).

Вообще говоря, со строго теоретической точки зрения для применения этой теоремы надо доказать, что ряд сходится и, более того, сходится равномерно на отрезке интегрирования [0, 0,5]. Эти вопросы будут подробно рассмотрены позже (См. Действия со степенными рядами). Отметим лишь, что в нашем случае подобное действие справедливо хотя бы по свойствам определенного интеграла (интеграл от суммы равен сумме интегралов).

Читайте также  Сколько весит кроссаут на пк

Как видно, абсолютная величина членов ряда очень быстро уменьшается, и требуемая точность достигается уже при третьем члене разложения.

Для справки: Точное (вернее – более точное) значение этого интеграла: 0,2482725418…

Интегралы с бесконечными пределами.

Пусть функция f(x) определена и непрерывна на интервале [a, ¥ ). Тогда она непрерывна на любом отрезке [a, b].

Определение: Если существует конечный предел , то этот предел называется несобственным интегралом от функции f(x) на интервале [a, ¥ ).

Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится.

Если предел не существует или бесконечен, то несобственный интеграл расходится.

Аналогичные рассуждения можно привести для несобственных интегралов вида:

Конечно, эти утверждения справедливы, если входящие в них интегралы существуют.

Несобственный интеграл расходится.

Теорема: Если для всех х (x ³ a) выполняется условие и интеграл сходится, то тоже сходится и ³ .

Теорема: Если для всех х (x ³ a) выполняется условие и интеграл расходится, то тоже расходится.

Теорема: Если сходится, то сходится и интеграл .

В этом случае интеграл называется абсолютно сходящимся.

Интеграл от разрывной функции.

Если в точке х = с функция либо неопределена, либо разрывна, то

Если интеграл существует, то интеграл — сходится, если интеграл не существует, то — расходится.

Если в точке х = а функция терпит разрыв, то .

Если функция f(x) имеет разрыв в точке b на промежутке [a, с], то

Таких точек внутри отрезка может быть несколько.

Если сходятся все интегралы, входящие в сумму, то сходится и суммарный интеграл.

Приложения определенного интеграла.

Вычисление площадей плоских фигур.

Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) 0, то площадь имеет знак “+”.

Читайте также  Прошивка роутера snr cpe w4n

Для нахождения суммарной площади используется формула .

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2.

Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:

Нахождение площади криволинейного сектора.

Для нахождения площади криволинейного сектора введем полярную систему координат. Уравнение кривой, ограничивающей сектор в этой системе координат, имеет вид r = f( j ), где r — длина радиус – вектора, соединяющего полюс с произвольной точкой кривой, а j — угол наклона этого радиус – вектора к полярной оси.

Площадь криволинейного сектора может быть найдена по формуле

Ссылка на основную публикацию
Adblock
detector