Сколько битов содержится в адресе ipv4

Весь интернет может работать благодаря IP адресам, которые приписываются абсолютно каждому устройству в сети, будь то локальная, по сути закрытая сеть и, конечно же, глобальная всемирная паутина.

Чтобы у каждого такого устройства была возможность идентифицировать себя, нужен был определенный формат приписываемых им адресов, и первым таким стал — интернет протокол IPv4.

Продолжаем тему работы глобальной паутины, из прошлого материала вы могли узнать про TCP протокол, сейчас же мы рассмотрим другой — IPv4, зачем он нужен и какие функции выполняет.

IPv4 — что это такое?

IPv4 — это четвертая версия интернет протокола IP адресов. Отвечает за формирование и вида айпи и является по сути основой для обслуживания сети. Именно эта версия стала очень популярной и востребованной, все благодаря понятному формату ИП-адресов и легкости их запоминания. Полностью расшифровывается, как — Internet Protocol version 4.

Используется в стеке протоколов TCP/IP. Позволяет создавать 4.3 миллиарда адресов, что довольно много. Но, к сожалению, к нашему времени и этого количества стало не хватать, поэтому, как приемнику этого протокола был создан новый — IPv6.

На данный момент является основной версией интернет протокола, который обслуживает весь интернет. Ведь переход на IPv6 стоит огромных денег, ресурсов и времени.

Данная версия протокола была прописана в документе RFC 791 в сентябре 1981 года, пришедшем на смену RFC 760, 80 года.

IPv4 адреса

Данный протокол использует IP размером в 32 бита, т.е. размером всего в 4 байта. Структурой он представляет — четыре числа в десятичном формате от 0 до 255 разделенных точками. В каждом таком числе 1 байт или 8 бит.

Слева некоторое количество чисел указывает на сеть, в которой находится данный адрес, а, с правой стороны на идентификатор самого устройства, расположенного в ней. Граница может находится где угодно между этими 32 битами. Например, первые 21 бит могут означать сеть, а оставшиеся 11 указывать на сам хост (устройство) внутри нее. Все это считается в двоичной системе счисления.

Хоть мы обычно и пишем такой айпи в десятичной системе счисления, но он может быть представлен и в другом формате:

С точкой:

  • В десятичном: 176.57.209.9
  • В двоичном: 10110000.00111001.11010001.00001001
  • В восьмеричном: 0260.0071.0321.0011
  • В шестнадцатеричном: 0xb0.30×9.0xd1.0x09

Без точки:

  • В десятичном: 2956579081
  • В двоичном: 10110000001110011101000100001001
  • В восьмеричном: 026016350411
  • В шестнадцатеричном: 0xb039d109

Классы IP адресов

Всего существует 5 классов IP:

Классовая адресация

Устаревшая технология, которая на данный момент не используется. Раньше применялась для распределения айпи. Но, так, как их количество ограничено, да и сама технология довольно негибкая — то от нее отказались.

Технология попросту не давала гибкости в распределении разных айпи, если, например, дали вам сеть 128.54.0.0/16 — то все, именно в ней надо располагать все устройства и разбить ее на несколько ну никак не получится. А если, например, на предприятии есть несколько независимых отделов и надо им сделать отдельные подсети? То придется запрашивать новые IPv4-адреса.

Или, например, нам нужно всего 6 айпи на всю компанию, естественно нам бы дали сеть класса C. Но в ней аж 254 айпи (2 убираем). Зачем нам столько, нам нужно то всего 6. А платить по сути придется больше, да и айпи будут пропадать впустую. Данную проблему отлично решила бесклассовая адресация.

Читайте также  Почему в метро сняли рекламу

Бесклассовая адресация (CIDR)

Сейчас используется CIDR (classless inter domain routing), т.е. бесклассовая адресация, которая позволяет гибко управлять пространством IP, без жестких рамок классовой адресации. С помощью нее можно создавать сети из нужного количества адресов. Кроме этого, одна большая сеть может включать в себя несколько мелких, которые также, могут быть разбиты на другие. Все это благодаря введению дополнительной метрики — маски подсети.

Например, есть сеть — 128.54.0.0/16, ее нужно разбить на 4 подсети. Просто берем третий по счету байт (октет) в хостовой части в двоичной системе и заимствуем у него первые 2 бита, потому что, 2 во 2-й степени дает 4. Значит префикс получается 16 + 2 = 18. Вот такие соответственно получаются подсети.

1: 128.54.0.0/18
2: 128.54.64.0/18
3: 128.54.128.0/18
4: 128.54.192.0/18

Чтобы было еще более понятно, переведем 128.54.0.0 в двоичный вид. Два бита могут принимать 4 разных значения это: 00, 01, 10, 11. Меняем теперь у айпи первые 2 бита у третьего по счету байта, а затем переводим все обратно в десятичную систему счисления.

1: 10000000.00110110.00000000.00000000 — 128.54.0.0
2: 10000000.00110110.01000000.00000000 — 128.54.64.0
3: 10000000.00110110.10000000.00000000 — 128.54.128.0
4: 10000000.00110110.11000000.00000000 — 128.54.192.0

Маска обычно указывается, после самого IPv4 адреса — после слеша «/» ставится число обозначающее битовую маску подсети, например, 14.12.17.0/24.

Само число после слеша, означает количество старших битов в маске подсети. Мы знаем, что IP в формате IPv4 состоит из 32 бит, маской являются старшие 24 бита, значит для возможных для использования адресов остается всего 8 бит (32 — 24 = 8). 2 в 8 степени — это 256 возможных адресов. А если бы мы, например, указали маску в 18 бит, то было бы: 32 — 18 = 14. 2 в 14 степени — это уже 16 384 вариантов.

Важно знать, что количество возможных хостов всегда будет меньше ровно на 2, т.к. первый будет идентификатором сети, а второй будет широковещательным.

Зарезервированные IP адреса

В формате IPv4 есть целый ряд айпи, которые уже зарезервированы. Вот их список:

В заключение

Попытался объяснить все, как можно более понятнее, чтобы вы точно разобрались. Заходите еще — будет еще много уроков по компьютерной грамотности и интересных статей на тему интернет технологий.

Адрес IPv4 представляет собой 32-разрядную (4 байта) двоичное поле. Для удобства восприятия и запоминания этот адрес разделяют на 4 части по 8 бит (октеты), каждый октет переводят в десятичное число и при записи октеты разделяют точками. Это представление адреса называется десятично-точечной нотацией. Преобразование IP-адреса из двоичного (бинарного) представления в десятичное показано на рис. 6.5.

Рис. 6.5. Представление IPv4-адреса

Следует отметить, что максимальное значение октета равно 11111111 в двоичной системе счисления, что соответствует 255 в десятичной системе счисления, поэтому IP- адреса, в которых хотя бы один октет превышает максимальное значение, считаются недействительными.

Чтобы быстро в уме выполнить преобразование из двоичного вида в десятичный, полезно запомнить таблицу, приведенную ниже. Десятичное число легко вычисляется как сумма цифр, соответствующих ненулевым битам в октете (таблица 5).

Читайте также  Преобразование комплексных чисел в показательную форму

Таблица 5 Преобразование из двоичного вида в десятичный

Двоичное значение октета Значение битов октета Десятичное значение октета
128+64
128+64+32
128+64+32+16
128+64+32+16+8
128+64+32+16+8+4
128+64+32+16+8+4+2
128+64+32+16+8+4+2+1

Маршрутизация пакетов в сетях передачи данных возможна благодаря тому, что IP- адрес структурирован и состоит из двух логических частей: идентификатора сети (Net ID) – сетевая часть адреса и идентификатора узла (Host ID), который однозначно определяет устройство в сетевом сегменте. Такая структура IP-адреса представляет собой двухуровневую иерархическую модель и позволяет устройству при передаче данных в составную сеть указывать не только удаленную сеть, но и узел в этой сети.

Рис. 6.6. Структура IPv4-адреса

Идентификатор сети определяет конкретную сеть или сегмент сети, в которой находится узел и используется для передачи данных на нужный сетевой интерфейс маршрутизатора или коммутатора 3-го уровня.

После того как данные достигают нужной сети, они передаются уникальному узлу в соответствии с идентификатором узла. Все узлы, использующие один и тот же идентификатор сети, должны быть расположены в одной сети или подсети (логическом сегменте сети).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома – страшная бессонница, которая потом кажется страшным сном. 8914 – | 7222 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Структура IP-адреса

IP-адрес представляет собой число размером 32 бита (или 4 байта), которое может быть записано в любой системе счисления (тут речь про адрес протокола IP version 4, в IPv6 он имеет размер 128 бит).

Например, адрес в десятичной системе 127.0.0.1 можно записать так:

Адрес делится на 4 октета, по 8 бит каждый, которые могут иметь значение от (00000000) до 255 (11111111):

IP-адрес содержит в себе две основных части — адрес сети и адрес хоста в этой сети.

К примеру, адрес 77.120.120.20 представляет собой сеть 77.120.120.0, в которой находится хост с адресом 20.

Сети и маска сети

Помимо указания самого IP-адреса, на сетевом интерфейсе так же указывается его маска сети. Маска не передаётся в заголовках TCP/IP пакетов, но используется сетевой картой для определения дальнейшего маршрута пакета — если адрес назначения находится в одной сети с адресом отправителя — он будет отправлен напрямую, если же в отдельной сети — пакет будет передан маршрутизатору, согласно таблице маршрутизации пакетов.

Рассмотрим адрес 77.120.120.20 с маской 255.255.255.0.

В двоичном представлении этот адрес можно записать так:

Для первых трёх октетов в IP-адресе установлен (или «включён«) «бит маски» (иначе — «битовая маска«), следовательно — первые три октета адреса являются адресом сети, а последние 8 бит — адресом хоста.

Таким образом, адрес 77.120.120.20 с маской 255.255.255.0 является в сетью 77.120.120.0, которая является классом С (которая, в свою очередь, является подсетью сети 77.120.0.0 класса В, которая является подсетью сети 77.0.0.0, которая является сетью верхнего уровня — А, хотя с появлением CIDR (см. ниже) понятие «классы сети» фактически потеряло актуальность).

Читайте также  Принтер самсунг scx 3200 не печатает

Что бы сократить запись о сети 77.120.120.0 с маской 255.255.255.0 — можно использовать сокращённую форму: 77.120.120.0/24.

«/24» называется «префикс сети«, и указывает на количество «битов маски«. Таким образом, из 32 бит адреса 24 указаны как адрес сети, а 8 — остаются для адресов хостов в этой сети.

Если взять, к примеру, сеть 77.120.120.0/28 — мы получим только 4 бита, выделенных для адресов, т.е. маска сети будет выглядеть как 11111111.11111111.11111111.11110000, или 255.255.255.240.

Такое описание сетей и подсетей называется «бесклассовой классификацией» ( Classless Inter-Domain Routing — CIDR ).

Использование CIDR даёт возможность отказаться от традиционного разбиения на сети различных классов (А, B, C и т.д.) , и создавать подсети необходимого размера.

К примеру, подсеть 77.120.120.0/28 (которую можно перевести в маску сети 11111111.11111111.11111111.11110000 в двоичном виде (4 последних бита «сброшены»)или 255.255.255.240 в десятичном) содержит 4 бита адресов хостов. В 4 бита можно «вместить» 2 4 адресов — 16. Из этих 16 стоит вычесть первый (сам адрес 77.120.120.0, так он является адресом самой сети) и последний (77.120.120.255, так как он является широковещательным, или broadcast, адресом сети, на который в теории должны отвечать все хосты сети), таким образом — из 16 адресов сети для хостов остаётся 14 адресов.

Маска подсети Альтернативный
формат записи
Последний октет
(в двоичном виде)
Последний октет
(в десятичном виде)
255.255.255.0 /24 0000 0000
255.255.255.128 /25 1000 0000 128
255.255.255.192 /26 1100 0000 192
255.255.255.224 /27 1110 0000 224
255.255.255.240 /28 1111 0000 240
255.255.255.248 /29 1111 1000 248
255.255.255.252 /30 1111 1100 252
Маска подсети Размер идентификатора хоста Максимальное
количество хостов
8 бит 255.0.0.0 24 бит 2 24 – 2 16777214
16 бит 255.255.0.0 16 бит 2 16 – 2 65534
24 бит 255.255.255.0 8 бит 2 8 – 2 254
29 бит 255.255.255.248 3 бит 2 3 – 2 6

Более полные таблицы сетей можно найти в статье Сети, подсети, классы подсетей. Таблица подсетей.

Разделение сети на подсети

Допустим, имеется сеть 77.120.120.0/24, или сеть 77.120.120.0 с маской 255.255.255.0 — из которой необходимо выделить две различные сети. Сеть 77.120.120.0/24 включает в себя адреса от 77.120.120.0 до 77.120.120.255.

Представим эту сеть и её маску в двоичном виде:

Займём на один бит больше в последнем октете маски сети — 11111111.11111111.11111111.10000000 (или 255.255.255.128 в десятичном виде). У нас осталось (32 бита IP-адреса — 7 бит под адреса хостов) = 25 бит — под маску. Следовательно, первая сеть в десятичном виде будет выглядеть как 77.120.120.0/25, и включает в себя адреса от 77.120.120.0 до 77.120.120.127 (7 бит под адреса: 2 7 = 128 адресов, включая первый адрес 0 — получаем 127 всего), а вторая сеть получит адреса от 77.120.120.128 до 77.120.120.255, или 77.120.120.128/25.

Ещё один способ рассчитать максимальное значение (последний адрес для сети): в 25-ти битной маске мы имеем 7 бит под адреса; следовательно — адрес первой сети в двоичном виде будет выглядеть так: 1001101.1111000.1111000.00000000 — где жирным выделен адрес сети, а курсивом — «свободные» биты под адреса хостов. Максимальное значение, которое можно вместить в семь бит — 01111111 = 127.

Для второй сети мы имеем вид 77.120.120.128, или 1001101.1111000.1111000.10000000, а максимальное значение последнего октета будет 11111111 = 255.

Ссылка на основную публикацию
Adblock detector