Сколько целых чисел являются решениями системы неравенств

В алгебре часто требуется не просто решить систему неравенств, но выбрать из полученного множества решений решения, удовлетворяющие некоторым дополнительным условиям.

Найти целые решения системы неравенств — одно из заданий такого рода.

1) Найти целые решения системы неравенств:

– 8\_\_\_left| <:2 >0>
ight.\ 5x 0>
ight. end
ight.]" title="Rendered by QuickLaTeX.com"/>

Из промежутка (-4;2) выбираем целые решения.

Ответ: -3; -2; -1; 0; 1.

2) Какие целые решения имеет система неравенств?

0>
ight.\ – 4x > – 20\_\_\_left| <:( - 4)

Отмечаем решения неравенств на числовых прямых. Первое неравенство нестрогое, поэтому -2 изображаем закрашенной точкой. Второе неравенство нестрогое, соответственно, 5 изображается выколотой точкой:

Целые решения на промежутке [-2;5) — это -2; -1; 0; 1; 2; 3; 4.

Ответ: -2; -1; 0; 1; 2; 3; 4.

В некоторых примерах не требуется перечислять целые решения, нужно лишь указать их количество.

Читайте также  Скрытый адрес отправителя как убрать

3) Сколько целых решений имеет система неравенств?

Переносим неизвестные в одну сторону, известные — в другую:

Решение неравенств отмечаем на числовых прямых. Оба неравенства нестрогие, поэтому -3,5 и 1,7 изображаем закрашенными точками:

Решением системы является промежуток [-3,5; 1,7]. Целые числа, которые входят в данный промежуток — это -3; -2; -1; 0; 1. Всего их 5.

4) Сколько целых чисел являются решениями системы неравенств?

Неизвестные — в одну сторону, известные — в другую с противоположным знаком:

Решение неравенств отмечаем на числовых прямых.

Множество решений системы состоит из единственного элемента — <2>. 2 — целое число, следовательно, решением данной системы является одно целое число.

kor.giorgio@gmail.com Выход

Программа для решения линейных, квадратных и дробных неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Причём, если в процессе решения одного из неравенств нужно решить, например, квадратное уравнение, то его подробное решение также выводится (оно заключается в спойлер).

Данная программа может быть полезна учащимся старших классов при подготовке к контрольным работам, родителям для контроля решения неравенств их детьми.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Читайте также  Программа изменения лица iphone

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x – 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 – 5&6/5y +1/7y^2
Результат: ( 3frac<1> <3>– 5frac<6> <5>y + frac<1><7>y^2 )

При вводе выражений можно использовать скобки. В этом случае при решении неравенства выражения сначала упрощаются.
Например: 5(a+1)^2+2&3/5+a > 0,6(a-2)(a+3)

Выберите нужный знак неравенства и введите многочлены в поля ниже.

Готовимся к экзамену по математике за период обучения на II ступени общего среднего образования

13. Системы неравенств

МАТЕРИАЛ ДЛЯ ПОВТОРЕНИЯ

Решить систему неравенств – значит найти решения для всей системы, либо доказать, что у данной системы решений нет.

Чтобы решить систему неравенств с одной переменной, надо:

1) отдельно решить каждое неравенство;

2) найти пересечение найденных решений, отметив решение каждого неравенства на числовой прямой.

Это пересечение и является множеством решений системы неравенств.

Решением совокупности неравенств называют такие значения переменной, которые являются верными хотя бы для одного из этих неравенств.

Читайте также  Сетевой драйвер на асус виндовс 7

Чтобы решить совокупность неравенств с одной переменной, надо:

1) отдельно решить каждое неравенство;

2) найти объединение найденных решений, отметив решение каждого неравенства на числовой прямой.

Это объединение и является решением совокупности неравенств.

Пример:
Решить совокупность неравенств:

>

Ссылка на основную публикацию
Adblock detector